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1. Introduction

A square complex is a 2-complex formed by gluing squares together.
This article is concerned with the fundamental group Γ of certain
square complexes of nonpositive curvature, related to quaternion al-
gebras. The abelian subgroup structure of Γ is studied in some detail.
Before outlining the results, it is necessary to describe the construction
of Γ.

In [Moz, Section 3], there is constructed a lattice subgroup Γ = Γp,l

of G = PGL2(Qp)×PGL2(Ql), where p, l ≡ 1 (mod 4) are two distinct
primes. This restriction was made because −1 has a square root in Qp

if and only if p ≡ 1 (mod 4), but the construction of Γ is generalized
in [Rat, Chapter 3] to all pairs (p, l) of distinct odd primes.

The affine building ∆ of G is a product of two homogeneous trees
of degrees (p + 1) and (l + 1) respectively. The group Γ is a finitely
presented torsion free group which acts freely and transitively on the
vertices of ∆, with a finite square complex as quotient ∆/Γ.

Here is how Γ is constructed. Let

H(Z) = {x = x0 + x1i+ x2j + x3k;x0, x1, x2, x3 ∈ Z}

be the ring of integer quaternions where i2 = j2 = k2 = −1, ij =
−ji = k. Let x = x0 − x1i − x2j − x3k be the conjugate of x, and
|x|2 = xx = x2

0 + x2
1 + x2

2 + x2
3 its norm.

Let cp, dp ∈ Qp and cl, dl ∈ Ql be elements such that c2p + d2
p + 1 = 0,

c2l + d2
l + 1 = 0. Such elements exist by Hensel’s Lemma and [DSV,

Proposition 2.5.3]. We can take dp = 0, if p ≡ 1 (mod 4), and dl = 0,
if l ≡ 1 (mod 4). Define

ψ : H(Z)− {0} → PGL2(Qp)× PGL2(Ql)
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by

ψ(x) =

( (
x0 + x1cp + x3dp −x1dp + x2 + x3cp
−x1dp − x2 + x3cp x0 − x1cp − x3dp

)
,(

x0 + x1cl + x3dl −x1dl + x2 + x3cl
−x1dl − x2 + x3cl x0 − x1cl − x3dl

) )
.

(1)

This formula abuses notation by identifying an element of PGL2(Qp)×
PGL2(Ql) with its representative in GL2(Qp)×GL2(Ql).

Note that ψ(xy) = ψ(x)ψ(y), ψ(λx) = ψ(x), if λ ∈ Z − {0}, and
ψ(x)−1 = ψ(x). Moreover the inverse image under ψ of the identity
element in PGL2(Qp)× PGL2(Ql) is precisely

Z− {0} = {x ∈ H(Z);x0 6= 0, x1 = x2 = x3 = 0} .
Let

Γ̃ = {x ∈ H(Z) ; |x|2 = prls, r, s ≥ 0 ;

x0 odd, x1, x2, x3 even, if |x|2 ≡ 1 (mod 4) ;

x1 even, x0, x2, x3 odd, if |x|2 ≡ 3 (mod 4)}.

Then Γ = ψ(Γ̃) is a torsion free cocompact lattice in G. Let

Ã = {x ∈ Γ̃;x0 > 0, |x|2 = p}, B̃ = {y ∈ Γ̃; y0 > 0, |y|2 = l} .
Then Ã contains p + 1 elements and B̃ contains l + 1 elements, by a
result of Jacobi [Lub, Theorem 2.1.8]. The images A = ψ(Ã), B =
ψ(B̃) of Ã, B̃ in Γ generate free groups Γp = 〈A〉 = 〈a1, . . . , a p+1

2
〉,

Γl = 〈B〉 = 〈b1, . . . , b l+1
2
〉 of ranks (p + 1)/2, (l + 1)/2 respectively

and Γ itself is generated by A ∪ B. The 1-skeleton of ∆ is the Cayley
graph of Γ relative to this set of generators. The group Γ has a finite
presentation with generators {a1, . . . , a p+1

2
} ∪ {b1, . . . , b l+1

2
} and (p +

1)(l + 1)/4 relations of the form ab = b̃ã, where a, ã ∈ A, b, b̃ ∈ B.
In fact, given any a ∈ A, b ∈ B, there are unique elements ã ∈ A,
b̃ ∈ B such that ab = b̃ã. This follows from a special case of Dickson’s
factorization property for integer quaternions ([Dic, Theorem 8]).

Proposition 1.1. ([Dic]) Let x ∈ Γ̃ such that |x|2 = pl. Then there
are uniquely determined z, z̃ ∈ Ã, y, ỹ ∈ B̃ such that zy, ỹz̃ = ±x.

It is worth noting that zy 6= ỹz̃ in general, as demonstrated by the
following example.

Example 1.2. Let p = 3, l = 5 and x = 1 + 2i + j + 3k. Then
(1− j + k)(1 + 2i) = x and (1− 2k)(1− j − k) = −x.

We can now outline the contents of this article. A fundamental fact,
upon which much else depends, is that Γ is commutative transitive, in
the sense that the relation of commutativity is transitive on non-trivial
elements of Γ. In particular Γ cannot contain a subgroup isomorphic
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to F2 × F2, where F2 denotes the free group of rank 2. Furthermore,
Γ is a CSA-group, i.e. all its maximal abelian subgroups Γ0 satisfy
gΓ0g

−1 ∩ Γ0 = {1} for all g ∈ Γ− Γ0.
Every nontrivial element γ ∈ Γ is the image under ψ of a quater-

nion of the form x0 + z0(c1i + c2j + c3k) where c1, c2, c3 ∈ Z are
relatively prime. The element γ is contained in a unique maximal
abelian subgroup Γ0 and the integer n = n(Γ0) = c21 + c22 + c23 de-
pends only on Γ0 rather than the particular choice of γ. We define a
class of maximal abelian subgroups of Γ isomorphic to Z2, which we
call period subgroups, and which are characterized by the condition(
−n
p

)
=

(−n
l

)
= 1. Every maximal abelian subgroup Γ0

∼= Z2 is con-

jugate in Γ to a period subgroup and, as the name suggests, period
subgroups are closely related to periodic tilings of the plane. On the
other hand, some maximal abelian subgroups of Γ are isomorphic to
Z, and we show how to construct these. Several explicit examples and
counterexamples are included.

2. The CSA property

Let τ : H(Q)−Q → P2(Q) be defined by τ(x) = Q(x1, x2, x3), which
is a line in Q3 through (0, 0, 0). By [Moz, Section 3] , two quaternions
x, y ∈ H(Q) − Q commute if and only if τ(x) = τ(y). This directly
implies the following lemma, which in turn has Proposition 2.2 as a
consequence, see also [Rat, Chapter 3].

Lemma 2.1. Elements x, y ∈ Γ̃ commute if and only if their images
ψ(x), ψ(y) ∈ Γ commute.

A group is said to be commutative transitive if the relation of com-
mutativity is transitive on its non-trivial elements.

Proposition 2.2. The group Γ is commutative transitive.

Wise has asked in [Wis, Problem 10.9] whether the fundamental
group of any nonelementary complete square complex contains a sub-
group isomorphic to F2 × F2. We can give a negative answer of this
question, since our group Γ belongs to this class of fundamental groups,
and it is a direct consequence of Proposition 2.2 that Γ does not con-
tain a F2 × F2 subgroup. In fact, since Γ is torsion free, and a (free)
abelian subgroup of Γ has rank ≤ 2 [Pra, Lemma 3.2], we have a more
precise result.

Corollary 2.3. The only nontrivial direct product subgroup of Γ is
Z× Z = Z2 .

If γ = ψ(x) ∈ Γ− {1} then the centralizer Γ0 = ZΓ(γ) is the unique
maximal abelian subgroup of Γ containing γ. Moreover Γ0 is deter-
mined by τ(x), independent of the choice of x.
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As described in [MR, Remark 4], a group is commutative transitive
if and only if the centralizer of any non-trivial element is abelian. A
third equivalent condition (called SA-property in [MR]) is proved for Γ
in the following lemma. It is used to show in Proposition 2.6 that Γ
is a CSA-group, i.e. all its maximal abelian subgroups are malnormal,
where a subgroup Γ0 of Γ is malnormal (or conjugate separated) if
gΓ0g

−1 ∩ Γ0 = {1} for all g ∈ Γ− Γ0. Any CSA-group is commutative
transitive, but the converse is not true, see [MR].

Lemma 2.4. If Γ1 and Γ2 are maximal abelian subgroups of Γ and
Γ1 6= Γ2 then Γ1 ∩ Γ2 = {1}.

Proof. Suppose that there exists a nontrivial element γ ∈ Γ1 ∩ Γ2. If
γi ∈ Γi − {1}, i = 1, 2, then γγ1 = γ1γ and γγ2 = γ2γ which implies
γ1γ2 = γ2γ1 by Proposition 2.2. Since Γ1, Γ2 are maximal abelian,
Γ1 = Γ2. �

It is well known that there is a (surjective) homomorphism

θ : H(Q)− {0} → SO3(Q)

defined by θ(y)x = yxy−1, for x = x1i + x2j + x3k ∈ H(Q) identified
with (x1, x2, x3) ∈ Q3.

If y ∈ H(Q)−Q then the axis of rotation of θ(y) is τ(y). This is an
immediate consequence of the fact that

θ(y)(y − y0) = y(y − y0)y
−1 = y − y0 .

Moreover the angle of rotation is 2α where cosα = y0

|y| [Vig, Chapitre I,

§3]. In particular, the angle of rotation is a multiple of π only if y0 = 0.

Lemma 2.5. (a) Suppose that x, y ∈ H(Q) − Q and y0 6= 0. Then
yxy−1 commutes with x if and only if y commutes with x.

(b) If a, b ∈ Γ, then bab−1 commutes with a if and only if b commutes
with a.

Proof. (a) If yxy−1 commutes with x, then the rotations θ(yxy−1) and
θ(x) have the same axis. However, the axis of θ(yxy−1) = θ(y)θ(x)θ(y)−1

is θ(y)τ(x). Therefore θ(y)τ(x) = τ(x) : in other words θ(y)(x1, x2, x3) =
±(x1, x2, x3). Now if θ(y)(x1, x2, x3) = −(x1, x2, x3) then θ(y) is a ro-
tation of angle π, with axis perpendicular to (x1, x2, x3). This cannot
happen since y0 6= 0. Therefore θ(y) has axis τ(x). That is τ(y) = τ(x),
and consequently y commutes with x. The converse is clear.

(b) If a = 1 or b = 1, the statement is obvious. If a, b ∈ Γ−{1} and
bab−1 commutes with a, then representatives x, y for a, b in H(Q)−Q
have nonzero real parts and satisfy the same relation, by Lemma 2.1.
The assertion follows from (a). Again, the converse is clear. �

Proposition 2.6. Γ is CSA.
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Proof. Suppose that Γ0 is a maximal abelian subgroup of Γ and that
b ∈ Γ, with bΓ0b

−1 ∩ Γ0 6= {1}. We must show that b ∈ Γ0.
By Lemma 2.4, bΓ0b

−1 = Γ0. Let a ∈ Γ0. Then bab−1 commutes
with a and so, by Lemma 2.5, b commutes with a. Since Γ0 is maximal
abelian, b ∈ Γ0. �

We now recall the following known result.

Lemma 2.7. (a) ([MR, Proposition 9(5)]) A non-abelian CSA-group
has no non-abelian solvable subgroups.

(b) ([MR, Proposition 10(3)]) Subgroups of CSA-groups are CSA.

Corollary 2.8. Let a ∈ Γp − {1} and b ∈ Γl − {1}. Then either
〈a, b〉 ∼= Z2 or 〈a, b〉 contains a free subgroup of rank 2.

Proof. If a, b commute, then 〈a, b〉 ∼= Z2, since Γ is torsion free and
〈a, b〉 is not cyclic. Assume that a, b do not commute. We will show
that 〈a, b〉 is not virtually solvable. The Tits Alternative for finitely
generated linear groups (see [Tit]) then implies that 〈a, b〉 contains a
free subgroup of rank 2. Note that Γ is linear, see [Rat, Section 3.2] for
an explicit injective homomorphism Γ → SO3(Q). Let U be a finite
index subgroup of 〈a, b〉, in particular there are r, s ∈ N such that
ar, bs ∈ U . The elements ar and bs do not commute since otherwise
also a and b would commute by Proposition 2.2. It follows that U
is not abelian. By Proposition 2.6 and Lemma 2.7(b), 〈a, b〉 is CSA.
Lemma 2.7(a) shows that U is not solvable. �

3. Maximal abelian subgroups and period subgroups.

Recall that the group Γ acts freely and transitively on the vertex set
of the affine building ∆ of PGL2(Qp)×PGL2(Ql). The building ∆ is a
product of two homogeneous trees and the apartments (maximal flats)
in ∆ are copies of the Euclidean plane tesselated by squares.

Notation 3.1. If n is an integer and p is an odd prime, then the
Legendre symbol is(

n

p

)
=


0 if p | n,
1 if p - n and n is a square mod p,

−1 if p - n and n is not a square mod p.

Any element of Γ− {1} is the image under ψ of a quaternion of the
form

(2) x = x0 + z0(c1i+ c2j + c3k) ,
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where c1, c2, c3 ∈ Z are relatively prime, z0 6= 0, (c1, c2, c3) 6= (0, 0, 0),
and

|x|2 = x2
0 + (c21 + c22 + c23)z

2
0 = prls, r, s ≥ 0 .

Recall that τ(x) = Q(c1, c2, c3) ∈ P2(Q) and recall that elements
ψ(x), ψ(y) ∈ Γ − {1} commute if and only if τ(x) = τ(y). Moreover
the centralizer Γ0 = ZΓ(ψ(x)) is the unique maximal abelian subgroup
of Γ containing ψ(x). Let

n(x) = n(ψ(x)) = n(Γ0) = c21 + c22 + c23 .

An abelian subgroup of Γ has rank ≤ 2 [Pra, Lemma 3.2]. Since Γ
is torsion free, a nontrivial abelian subgroup Γ0 of Γ is isomorphic to
either Z or Z2. If Γ0

∼= Z2 then there is a unique apartment AΓ0 which
is stabilized by Γ0 [Pra, 6.8], and Γ0 acts cocompactly by translation
on this apartment. We call AΓ0 a periodic apartment.

Definition 3.2. A maximal abelian subgroup Γ0
∼= Z2 will be called

a period subgroup if the apartment AΓ0 contains the vertex O of ∆
whose stabilizer in G is PGL2(Zp)× PGL2(Zl).

Since the action of Γ on ∆ is vertex transitive, every maximal abelian
subgroup Γ0

∼= Z2 is conjugate in Γ to a period subgroup. We want to
show that n(x) determines when ZΓ(ψ(x)) is a period subgroup of Γ.

Recall that Γ is generated by free groups Γp, Γl, of ranks (p+ 1)/2,
(l+1)/2 respectively. If γ ∈ Γ, let `(γ) denote the natural word length
of γ, in terms of the generators of Γp, Γl. The condition `(γ2) = 2`(γ),
which is used in the next lemma, is equivalent to the assertion that γ
has an axis containing O, upon which γ acts by translation.

Lemma 3.3. Let a = ψ(x) ∈ Γp−{1} and let n = n(x). The following
statements are equivalent.

(a) p - n;
(b) `(a2) = 2`(a);

(c)
(
−n
p

)
= 1.

Similar equivalent assertions hold, if p is replaced by l.

Before giving the proof, we note that(
−n
p

)
=


(

n
p

)
, if p ≡ 1 (mod 4) ,

−
(

n
p

)
, if p ≡ 3 (mod 4) .

Proof. (a) ⇔ (b). The idea for this comes from the proof of [Moz,
Proposition 3.15]. Write x as in (2) with |x|2 = x2

0 + nz2
0 = pr, r > 0.

Extracting a common factor, if necessary, we may assume gcd(x0, z0) =
1. This means that r = `(a) [Rat, Corollary 3.11(4), Theorem 3.30(1)].

Suppose that p - n. To prove `(a2) = 2`(a) we must show that p
does not divide x2. Now if p divides

x2 = (x2
0 − nz2

0) + 2x0z0(c1i+ c2j + c3k) ,
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then p divides the real part x2
0 − nz2

0 . Therefore p divides x0 (since p
divides pr = x2

0 + nz2
0). But this implies that p divides z0, since p - n.

This contradicts the assumption gcd(x0, z0) = 1.
Conversely, suppose that `(a2) = 2`(a). If p divides n, then p divides

x0 (since p divides x2
0+nz

2
0). Therefore p divides the real and imaginary

parts of x2 = (x2
0− nz2

0) + 2x0z0(c1i+ c2j + c3k). But this implies that
`(a2) < 2r, a contradiction.

(a) ⇔ (c). Suppose that p - n. Note that p does not divide z0:
otherwise p also divides x0. It follows that z0 has a multiplicative
inverse (mod p). That is, one can choose t ∈ Z such that z0t ≡ 1
(mod p). Then

0 ≡ (x2
0 + nz2

0)t
2 ≡ x2

0t
2 + n (mod p) .

Since p - n, this means that
(
−n
p

)
= 1. The converse is obvious. �

Lemma 3.4. If Γ0
∼= Z2 is a period subgroup of Γ and n = n(Γ0), then(

−n
p

)
=

(−n
l

)
= 1.

Proof. The group Γ0 acts cocompactly by translation on the apartment
AΓ0 containing the vertex O. It follows that Γ0 contains elements
a ∈ Γp − {1}, b ∈ Γl − {1}. These elements act freely by translation
on the apartment, and so `(a2) = 2`(a), `(b2) = 2`(b). Therefore(
−n
p

)
=

(−n
l

)
= 1, by Lemma 3.3. �

Lemma 3.5. If γ = ψ(x) ∈ Γ− (Γp ∪ Γl) and gcd(n(x), pl) = 1, then
ZΓ(γ) is a period subgroup of Γ.

Proof. Let x = x0 + z0(c1i + c2j + c3k) as in (2) and n = n(x) =
c21 +c22 +c23. We may assume gcd(x0, z0) = 1 and |x|2 = x2

0 +nz2
0 = prls,

where r, s ≥ 1 because ψ(x) 6∈ Γp ∪ Γl.
The assumption gcd(n, pl) = 1 implies that gcd(x0z0, pl) = 1. For

example, if p | x0 then p | z0, since p | (x2
0+nz2

0) and p - n. This contra-
dicts gcd(x0, z0) = 1. Similarly p - z0. It follows from the “if” part of
the proof of [Moz, Proposition 3.15] (and an obvious generalization to
the cases where p ≡ 3 (mod 4) or l ≡ 3 (mod 4)) that γ = ψ(x) lies in
an abelian subgroup Γ0 of Γ, with Γ0

∼= Z2. The same proof also shows
that Γ0 acts cocompactly by translation on an apartment A containing
O. (The essential point in the proof of Mozes is that `(γ2) = 2`(γ).)
However, ZΓ(γ) is the unique maximal abelian subgroup containing Γ0.
Therefore ZΓ(γ) acts cocompactly by translation on the apartment A,
by the uniqueness assertion in [Pra, 6.8]. In other words, ZΓ(γ) is a
period subgroup of Γ. �

Now we can describe the period subgroups of Γ.
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Proposition 3.6. Let Γ0 be a maximal abelian subgroup of Γ, and let

n = n(Γ0). Then Γ0 is a period subgroup if and only if
(
−n
p

)
=

(−n
l

)
=

1.

Before proceeding with the proof, we introduce some notation. There
is a canonical Cartan subgroup C of G = PGL2(Qp) × PGL2(Ql)
defined by

C =

((
∗ 0
0 ∗

)
,

(
∗ 0
0 ∗

))
∩G .

The group C acts by translation on an apartment A, which contains
the vertex O whose stabilizer in G is PGL2(Zp) × PGL2(Zl). The
action of C is transitive on the vertices of A.

Proof of Proposition 3.6. In view of Lemma 3.4, it suffices to show that(
−n
p

)
=

(−n
l

)
= 1 implies that Γ0 is a period subgroup. Suppose

therefore that
(
−n
p

)
=

(−n
l

)
= 1. Then gcd(n, pl) = 1. The result

will therefore follow from Lemma 3.5, if we can show that Γ0 is not
contained in Γp ∪ Γl. By symmetry it is enough to prove that if Γ0

contains an element b = ψ(y) ∈ Γl − {1}, then it also contains an
element a = ψ(x) ∈ Γp − {1}. For then the element ba does not lie in
Γp ∪ Γl.

Write y = y0 + z0(c1i+ c2j + c3k), where c1, c2, c3 ∈ Z are relatively
prime and n = n(y) = c21 + c22 + c23. The quaternion y represents the
element b of Γl of word length `(b) = s > 0. By Lemma 3.3, b acts by
translation of distance s along an axis Lb containing O.

The element of GL2(Qp)×GL2(Ql) corresponding to y in the formula

(1) has eigenvalues y0 ± z0

√
−n. The assumption

(
−n
p

)
=

(−n
l

)
= 1

implies that
√
−n exists in both Qp and Ql and therefore that b is

diagonalizable in G. In other words, there exists an element h ∈ G
such that h−1bh ∈ C.

The group hCh−1 acts by translation on the apartment hA. Also the
element b ∈ hCh−1 ∩ Γl acts by translation on the apartment hA, in a
direction which will be called “vertical”. Now hA necessarily contains
the axis Lb of b, by [BH, Theorem II.6.8 (3)]. In particular, O ∈ hA.

Choose g ∈ hCh−1 to act on hA by horizontal translation. Con-
sider the horizontal strip H in hA obtained by translating the vertical
segment [O, bO].

Since Γ acts freely and transitively on the vertices of ∆, each vertical
segment gi[O, bO] of H lies in the Γ-orbit of precisely one segment of
the form [O, γO], γ ∈ Γl, `(γ) = s. Moreover, there are only finitely
many such segments [O, γO].

If i > 0 then giO = uiO, for some ui ∈ Γp−{1}. Since b and g com-
mute, we have gibO = bgiO = buiO. That is, gi[O, bO] = [uiO, buiO],
which lies in the Γ-orbit of the segment [O, u−1

i buiO]. By the finiteness
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O

bO

uiO

buiO

ujO

bujO

•

•

•

•

•

•

Figure 1. The horizontal strip H.

assertion in the preceding paragraph, there exist integers j > i > 0
such that

[O, u−1
i buiO] = [O, u−1

j bujO] .

By freeness of the action of Γ,

u−1
i bui = u−1

j buj ,

and ui 6= uj. Therefore ab = ba, where a = uiu
−1
j ∈ Γp − {1}. �

A maximal abelian subgroup Γ0 of Γ may be isomorphic to Z. Here
is a way of providing some examples.

Corollary 3.7. Suppose that a ∈ Γp − {1}, and n = n(a) satisfies(
−n
p

)
= 1,

(
−n
l

)
= −1 .

Then ZΓ(a) < Γp is a maximal abelian subgroup of Γ, and ZΓ(a) ∼= Z.
A similar assertion applies to elements of Γl − {1}.

Proof. The hypothesis implies that gcd(n, pl) = 1. If ZΓ(a) 6⊂ Γp, then
ZΓ(a) contains an element γ 6∈ Γp ∪ Γl. Therefore ZΓ(a) = ZΓ(γ) is a
period group, by Lemma 3.5. But this implies

(−n
l

)
= 1, by Proposition

3.6, – a contradiction. �

Example 3.8. Let Γ = Γ3,5. This group has a presentation with
generators {a1, a2, b1, b2, b3} and relators

{a1b1a2b2, a1b2a2b
−1
1 , a1b3a

−1
2 b1, a1b

−1
3 a1b

−1
2 , a1b

−1
1 a−1

2 b3, a2b3a2b
−1
2 } ,

where

a1 = ψ(1 + j + k), a−1
1 = ψ(1− j − k),

a2 = ψ(1 + j − k), a−1
2 = ψ(1− j + k),

b1 = ψ(1 + 2i), b−1
1 = ψ(1− 2i),

b2 = ψ(1 + 2j), b−1
2 = ψ(1− 2j),

b3 = ψ(1 + 2k), b−1
3 = ψ(1− 2k).

The subgroup 〈a1〉 = ZΓ(a1) < Γ3 is maximal abelian in Γ by Corol-
lary 3.7, since n(a1) = 2,

(−2
3

)
= 1 and

(−2
5

)
= −1.



10 DIEGO RATTAGGI AND GUYAN ROBERTSON

The subgroup 〈a1a
−1
2 a2

1〉 = 〈ψ(−5 − 6i − 2j + 4k)〉 is not maximal
abelian. It is contained in the period subgroup

Γ0 = 〈a1a
−1
2 a2

1, b3b
−1
2 b−1

3 b1〉 ∼= Z2 .

Indeed, n(Γ0) = n(a1a
−1
2 a2

1) = 14,
(−14

3

)
= 1,

(−14
5

)
= 1. Note that

b3b
−1
2 b−1

3 b1 = ψ(−11+18i+6j− 12k). Part of the period lattice for Γ0

is illustrated in Figure 2.

............................... ................ ............................................... ............................... ................ ............................... ................

a1 a2 a1 a1
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Figure 2. Part of a periodic apartment for Γ0 < Γ3,5 .

Example 3.9. Let Γ = Γ3,5. Consider b1a1b
−1
1 = ψ(5 − 7j + k).

By Example 3.8, 〈a1〉 is maximal abelian in Γ. Therefore so also is
Γ0 = 〈b1a1b

−1
1 〉 = b1〈a1〉b−1

1 . Now γ = b1a
6
1b

−1
1 = a2a

−1
1 a−2

2 a−1
1 a2 =

ψ(5(23 + 14j − 2k)) = ψ(x) ∈ Γ3, with |x|2 = 52.36. Also n(x) =
n(Γ0) = 50,

(−50
3

)
= 1 and

(−50
5

)
= 0. There is a periodic horizontal

strip of height 2 (Figure 3), upon which γ acts by translation. This
strip is the union of the axes of γ.
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Figure 3. Part of a periodic horizontal strip .
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Example 3.10. Let Γ = Γ3,5. Conjugating the period subgroup
〈a1a

−1
2 a2

1, b3b
−1
2 b−1

3 b1〉 of Example 3.8 by a2 gives the group

Γ0 = 〈a2a1a
−1
2 a2

1a
−1
2 , a2b3b

−1
2 b−1

3 b1a
−1
2 〉 = 〈a2a1a

−1
2 a2

1a
−1
2 , b2b

−1
1 b22〉

= 〈ψ(−15 + 10i+ 2j + 20k), ψ(−11− 10i− 2j − 20k)〉 ∼= Z2 ,

which is not a period subgroup since n(Γ0) = 126,
(−126

5

)
= 1 and(−126

3

)
= 0.

One could conjecture that every maximal abelian subgroup of Γ is
conjugate to either a period subgroup or to a subgroup of Γp or Γl.
The next example shows that this conjecture is not true. We need the
following definition and Lemma 3.11:

If x = x0 + x1i + x2j + x3k ∈ H(Z), let m(x) = |x|2 − <(x)2 =
x2

1 +x2
2 +x2

3, where <(x) = x0 denotes the real part of x. Observe that
m(x) = λ2n(x) for some integer λ.

Lemma 3.11. Let x, y ∈ H(Z), then m(xyx) = (|x|2)2m(y).

Proof. Using the rules <(xy) = <(yx) and |xy|2 = |x|2|y|2, we conclude

m(xyx) = |xyx|2 −<(xyx)2 = (|x|2)2|y|2 − (|x|2<(y))2 = (|x|2)2m(y) .

�

Example 3.12. Let Γ = Γ3,5 and a2b3 = ψ(3 + 2i+ j + k). The group
Γ0 = ZΓ(a2b3) is a maximal abelian subgroup of Γ such that n(Γ0) = 6.
We fix any element γ = ψ(x) ∈ Γ.

The maximal abelian subgroup γΓ0γ
−1 is not a subgroup of Γ3 or

Γ5, since γa2b3γ
−1 ∈ γΓ0γ

−1 is the ψ-image of x(3+2i+ j+k)x whose
norm is a product of an odd power of 3 and an odd power of 5.

We claim that γΓ0γ
−1 is not a period subgroup. If |x|2 = 3r5s,

r, s ≥ 0, then by Lemma 3.11

(3r5s)2.6 = m(x(3 + 2i+ j + k)x) = λ2n(γΓ0γ
−1)

for some integer λ. It follows that 3 | n(γΓ0γ
−1) , in particular(

−n(γΓ0γ
−1)

3

)
= 0

and Proposition 3.6 proves the claim.
Since any maximal abelian subgroup of rank 2 is conjugate to a

period subgroup, it also follows that Γ0
∼= Z. See Figure 4 for a periodic

vertical strip of width 1 which is globally invariant under the action of
a2b3. Note that (a2b3)

2 = b2b3. Therefore a2b3 acts upon the strip by
glide reflection and the unique axis of a2b3 is the vertical central line
of the strip.

It is well-known that period subgroups in Γ always exist. See for
example [Rat, Proposition 4.2] for an elementary proof of this fact,
using doubly periodic tilings of the Euclidean plane by unit squares.
We mention a corollary of this in terms of integer quaternions.
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Figure 4. Part of a periodic vertical strip .

Corollary 3.13. Given any pair (p, l) of distinct odd primes, there are
x, y ∈ Γ̃ and 1 ≤ r ≤ 4(p+ 1)2(l + 1)2 such that xy = yx and

|x|2 = pr, |y|2 = lr,

(
−n(x)

p

)
=

(
−n(y)

l

)
= 1 .

The integer r in this corollary comes from the constructive proof of
[Rat, Proposition 4.2], and its upper bound is certainly not optimal. In
fact, if p, l ≡ 1 (mod 4), there is a direct proof of Corollary 3.13 (with
r = 1), applying the Two Square Theorem.
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CP 64, CH–1211 Genève 4, Switzerland.

E-mail address: rattaggi@math.unige.ch

Mathematics Department, University of Newcastle, NE1 7RU, U.K.
E-mail address: A.G.Robertson@newcastle.ac.uk


