COUNTING (1,5)-BM RELATIONS
AND
CLASSIFYING (2,2)-BM GROUPS

DIEGO RATTAGGI

ABSTRACT. In the first part, we prove that the number of (1, 3)-BM relations
is3-5-...-(28+1), which was conjectured by Jason Kimberley. In the second
part, we construct two isomorphisms between certain (2,2)-BM groups. This
completes the classification of (2,2)-BM groups initiated in [4].

1. INTRODUCTION

Let 7,. be the r-regular tree and Aut(7,.) its group of automorphisms. If a, 8 € N;
an (a, 8)-BM group is a torsion-free subgroup of Aut(7z,) x Aut(724) acting freely
and transitively on the vertex set of the affine building 73, X 733.

The class of (c, )-BM groups includes for example F,, x Fp (the direct product
of free groups of rank « and f), but also more complicated groups, like groups
containing a finitely presented, torsion-free, simple subgroup of finite index, if «
and [ are large enough, see [1, Theorem 6.4]. The first (and only known) examples
of finitely presented, torsion-free, simple groups have been found in this way. See
also [7, Section IL.5] for a non-residually finite (4, 3)-BM group, [6, Example 2.3] for
a (3,3)-BM group having no non-trivial normal subgroups of infinite index, and [6,
Example 3.4] for a (6,4)-BM group having a subgroup of index 4 which is finitely
presented, torsion-free, and simple.

An equivalent definition for an («, 3)-BM group is the following (the equivalence
is shown in [4, Theorem 3.4]): Let Ay, = {a1,...,a0}, Bg = {b1,...,b3}, a,a’ €
ALl and b,V € Bﬁil‘ We think of the elements in AX! as oriented horizontal edges
and the elements in Bgil as oriented vertical edges. A geometric square [aba’'] is
a set (consisting of a usual oriented square aba’b’ and reflections along its edges)

[aba'V'] := {abd'V', a'b'ab, a0 a7 07, &/ 70 a0 L)
See Figure 1 for an illustration of the geometric square [aba'd’].
It is easy to check that
[aba'V'] = [a'Vab] = [a 0" ra' " 07 = [a/Pb ta 0 Y.

Let GS, g be the set of all such geometric squares.

GSap = {labd't] : a,a’ € AE' bV € Bﬂil}.
Given a subset S C GS, 3, the link Lk(S) is an undirected graph with vertex
set AL! I_IBgEl and edges {a~1,b}, {a’,b7 1}, {a’71,b'}, {a, b’ "'} for each geometric

square [aba’b’] € S. These edges in the link correspond to the four corners in aba'd’.
An (a,8)-BM relation is a set R consisting of exactly o geometric squares in
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FIGURE 1. The geometric square [aba'b’], represented by each of
these four squares.

GS,, 5 such that Lk(R) is the complete bipartite graph K, 25 (where the bipartite
structure is induced by the decomposition AX! LI Bﬁil). This link condition for R

means that for any given a € AT! b € Bﬂﬂ, there are unique o’ € AT b € Bﬁil
such that [aba’b'] € R. Tt also excludes the existence of geometric squares of the
form [abab] in an (a, 3)-BM relation by a simple counting argument (K, 23 has
2a + 23 vertices and 2« - 23 = 4af edges, so each of the aff geometric squares
in R has to contribute four distinct edges, but [abab] only contributes the two
edges {a~!,b} and {a,b7'}). We denote by R, s the set of («,3)-BM relations.
Any group I" with a finite presentation (A, U B | R), where R € R, g, is called
an («, 3)-BM group. Note that any of the four squares representing a geometric
square induces the same relation in I, and that therefore any («, 3)-BM group has
a presentation with o + 3 generators and af relations of the form aba’d’.

The cardinality of R, g (i.e. the number of («, 3)-BM relations) has been com-
puted for a finite number of small pairs (a, ) in [5, Table B.3] and independently
with a different method in [3, Table 4], see Table 1.

In the smallest case, we have |Ry 1| = 3, since

Riy = {{larbray 071}, {larbianby '}, {[a1biay H0a]}

using the observation that

{[a1bra1b1]} = {[ay by tay Moy ]} € Raa
and

{larb7 'asby "1} = {[a7 'bray '0i]} ¢ Ru,y.
In general, let’s say if o8 > 10, the value |R, g| is not known, but Kimberley has
conjectured in [3, Conjecture 193] that |R; g| =3-5-...-(26+1) for all 3 € N. We
will prove this conjecture in Section 2. Observe that |R, g| = |Rg,«| and therefore
|Rai|=3-5-...-(2a+1) for all @ € N.

Each element R € R, g defines the («, 3)-BM group (A, U Bg | R). Of course,

it is possible that distinct («, 3)-BM relations define isomorphic (¢, 5)-BM group,
for example (taking o = §=1)

(a1, b1 | a1b1a1b1_1> = (ay, by | 01b1(11_151>,
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o B | Ra.s]

1]1 3

112 15 =3-5

113 105 =3-5-7

114 945 =3-5-7-9

115 10395 =3-5-7-9-11

116 135135 =3-5-7-9-11-13

1|7 2027025 =3-5-7-9-11-13-15
18] 34459425 =3-5-7-9-11-13-15-17
1191654729075 =3-5-7-9-11-13-15-17-19
212 541 prime

213 35235 =3%-5-29

214 3690009 =3%-19-7193

2 | 5| 570847095 =3%-5.7-13-1721

33| 27712191 =3-13-710569

TABLE 1. Number of («, 5)-BM relations, o < 3.

whereas {[a1b1a1b; ]} # {[a1bia; 'b1]}. The classification of («, 3)-BM groups up
to isomorphism seems to be a hard problem in general (even if the set Ry g is
known). It has been done by Kimberley in [3, Chapter 5] for (1,/3)-BM groups,
if 5 € {1,...,5}. Moreover, Kimberley and Robertson have proved that there
are at least 41 and at most 43 (2,2)-BM groups up to isomorphism, see [4, Sec-
tion 7] and [3, Chapter 5]. Starting from a reservoir of |Rs | = 541 (2,2)-BM
relations, the lower bound was achieved by computing the abelianizations of the
corresponding (2, 2)-BM groups, and the abelianizations of subgroups of low index.
The upper bound comes from constructing isomorphisms via generator permuta-
tions and Tietze transformations. It remained the open question whether the group
T'y is isomorphic to I'sg and whether T's is isomorphic to I'1g (these four (2,2)-BM
groups will be defined in Section 3). We will give a positive answer by constructing
explicit isomorphisms, such that there are in fact exactly 41 (2,2)-BM groups up
to isomorphism. If a, 8 > 2, no other complete classification of («, 3)-BM groups
is known so far.

2. COUNTING (1, 3)-BM RELATIONS

In this section, we will define a map g which associates to any (1, 3)-BM relation
R e Ry pgasetyg(R) = ’(/}él)(R)U’l/Jg)(R) consisting of 3+24 distinct (1, 3+1)-BM
relations (see Lemma 2 and Lemma 3). These 3 + 23 elements are either obtained
by adding to R a single new geometric square, or by first removing from R one
of the B geometric squares and then adding two suitably chosen new geometric
squares. Distinct elements R, T in Ry g will produce disjoint sets ¥g(R), ¥5(T)
(see Lemma 4). Moreover, any (1, 3+ 1)-BM relation can be obtained by 13 (see
Lemma 5). This allows us to compute inductively the exact number of (1, 3)-BM
relations for any $ € N, and therefore to prove Kimberley’s conjecture.
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Let R = {r,...,r3} € R13, i.e. r1,...,rg are 3 geometric squares in GS1 g
satisfying the link condition Lk({r1,...,73}) = K2 23. We first define

1 —1,—

Y(R) == {{r1,....rp, [arbgsrar 0511},
{rl, ces TR, [a1b5+1albgil]},
{Tlv < Ty [albﬂ+1a;1bﬁ+1}}}v

a set consisting of three distinct (1,5 + 1)-BM relations.
If [aba'b'] € GS1 3, we define

Do ([aba’¥]) := {{{abss1a'®'), [aba'b; 1]}, {fabs ),V laba'b.n]} .
Lemma 1. The map ¢g is well-defined.
Proof. We have to show
¢p(laba't']) = ¢p([a’b'ab]) = d([a™"b""a'T071]) = ga(la ' a0,
Let vq := [abgy1a'b], ve := [aba’ bﬂ}rl] v3 = [abilla’b'} and vy := [aba'bg41], such

that we have {v1,v2,v3,v4} C GS1,g41 and ¢g([aba’d'’]) = {{v1,v2}, {vs, va}}.
We check that

Su(lab'ab)) = {{la'bss10b], [@Vabz !y ]}, ([a'b32 yab], [aWabsial)
= {{vs, v3}, {v2, v1}} = ¢p([aba’t']),

¢ﬂ([a—1b/—1a/—1b—1]) — {{[ _1b3+1a’_1b_1],[ —1b/ 1 / 1b§+1]}
{la= 051,007 a0 a " g} )
= {{va, v}, {va,v3}} = ¢p([aba’t']),

op(la’ "0 a W) = {{la Mbpana 0] [0 b a0 ),
{[a" b5l a 0 [0 0 e g ]} )
= {{vs,va}. {v1,02}} = dp([aba’¥]).
u

See Figure 2 for a visualization of the map ¢g.

We now construct the set ¢é2) (R) consisting of 23 distinct (1, 5+1)-BM relations
(as we will prove later). Let

v (R U( U {Pu<R\{m}>})-

Peos(ri)
Note that if r; = [aba’l'] then by definition of ¢g
U {Pu@\{rn})}=
Pegg(rs:)

{{labs+1a't, [aba'bs 1} U (R\ {r:}), {labsy,a'b'], [aba'bsia]} U (R {ri})}.
Finally, let

»

1 2
Ua(R) =4 (R) U (R).
See Section 4 for an explicit construction of the map g in the case 8 = 1 and

B =2.



COUNTING (1, 8)-BM RELATIONS AND CLASSIFYING (2,2)-BM GROUPS 5

’

a’ a
b’ bg+1 bpta b
a/
a a
b’ b
a’ a’
a
b bg+1 bgta b
a a

FIGURE 2. The map ¢g associates to the geometric square
[aba’b'] € GS1,5 (represented on the left) the two geometric squares
in GS1 g+1 represented on top right, and the two geometric squares
in GS1 g1 represented on bottom right, respectively.

Lemma 2. If R € Ry g, then the elements in ¥3(R) are (1,5 + 1)-BM relations.

Proof. The statement is clear for the three elements in zb(ﬁl)(R) looking at their
link.
To show it for the elements in 7,[1(52)(]%), first note that

(abgera'¥) # laba'b31,] (= [a~ bpaa~"7Y)
and
[absy,a'b] # [aba'bs 1] (= [a™ by a0 1).

Therefore each element in wéz) (R) consists of 8 + 1 geometric squares in GS1 g41.
Let R ={r1,...,73} € R1 g, fix any i € {1,..., 8}, and suppose that r; = [aba’l’].
Since Lk(R) = K» 93, we have

Lk({r1,... 78, [ab5+1a’b5}r1]}) = Ks25+2,
independently of a,a’ € {a1,a7'} = AF'. Since r; = [aba'V'], we can write this as
K»2p42 = Lk({[aba't'], [abgi1a'b51, ]} U (R {7:})),
which can directly be seen to be equal to
Lk({[ab41a'V'], [aba'bj 1]} U (R {ri})),
since the edges in Lk({[aba’V'], [abgﬂa’bg}rl]}) are
{a 0}, {d/, b7}, {a/ 1, 0'Y, {a, 071,
{a b b (b5 b 401 b5 1 o, b ),

which are also the edges in Lk({[abgt1ab'], [aba’bgil

a link preserving surgery as described more generally in [1, Section 6.2.2].

1}). In fact, we have performed
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Similarly (interchanging bgi1 and blgil) one proves that

Lk({labj,a'V'], [aba'bs1]} U (R\ {r:})) = K2.2p+2.

Lemma 3. If R € Ry 3, then |[¢g(R)| = 3+ 20.

Proof. Clearly [v§”(R)| = 3.
The label bg1q or bgj_l appears in exactly one geometric square of each element

in wgl)(R), but in exactly two geometric squares of each element in ’l/)g) (R), hence

we conclude ,
o5 (B N (R) =0.
Let R = {ry,...,rg}. Fixany i € {1,..., 8} and suppose that r; = [aba’b']. The

geometric square 7; only misses in the two elements
{labsr1a'V'], [aba'by 1]} U (R {r:})
and
{labs,a't'], [aba'bsia]} U (R {r:})

of wéz)(R). Suppose that they are equal. Then

{labssra'¥), faba'3 1T} = {labg L'V, [ababsa]}.
It follows that
abp11a'b] = [aba'bsi1] (= [a'bgr1ab)),

since [abgy1a'b'] # [ab +1a’b’], but then a = a’ and b = V'. This is impossible, since

[abab] ¢ R € Ry g. This shows that the 20 elements in d,gz) (R) are distinct, and we

get

2 1 2 1 2

[a(R)] = oy (R)uwg” (R)] = [ (R + 105" (R)] = [0 (R)Nw” (R)| = 3+26.

O

Lemma 4. If R,T € Ry 3 and R# T, then g(R) Ng(T) = 0.

Proof. Let R = {rq1,...,rg} and T = {t1,...,t3}. We suppose without loss of
generality that 1 = [aba’d’] ¢ T. Then 7 appears in no element of ¥g(T), but
appears in each element of ¥3(R) except in
2

U = {[abg 410V, [aba'by 1,1} U (R\ {r}) € ¥ (R)
and

Vi = {[abs},a'b], [aba'bs 1]} U (R\ {r1}) € ¥5 (R).
We want to show by contradiction that Uy, Vi ¢ ¢g(T). It is clear that Uy, V; ¢
wgl)(T). Fix any i € {1,...,3} and let t; = [abab], where d,a € {a1,a7'} and
b,b € Bgl. We suppose that U; € 1#22) (T) or V; € wgz)(T) and have therefore to

consider four cases:
Case 1: Suppose that

Uy = {[abg1ab], [ababy L]} U (T'\ {t:}).
Then R\ {r1} =T\ {t;} and
{labs11a'V'], [aba'by 1,1} = {[abs1ab), [abab |, ]}.
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B+1
b=1"0 a = aand b = b. This implies ¢; = [aba’l’] = ry, hence R = T,
contradiction.

Case 1.2: If

Case 1.1: If [abp1a'b] = [dbss1ab] and [aba'bgy ] = [ababs.,], then a = d,
a

[abs1a'¥] = [ababs L] (= [a "bgaa "5 )
and
[aba'bj ] = [abgi1ab] (= [0~ a bz 1)),
thena=a"*, b=>b"1,a =a ' and ¥ = b~!. This implies
ti = [a™ 0t 77 = [abd'V] = ry
and again the contradiction R =T
The three remaining cases
Case 2: Uy = {[abjy,ab], [ababs1]} U (T \ {t;})
Case 3: Vi = {[abp1ab], [ababg} ]} U (T'\ {t:})
Case 4: Vi = {[abg,ab], [ababg 1]} U (T \ {t:})
can be treated similarly. In fact we can reduce them to Case 1 as follows:

In Case 2, since

{[ab1,ab), [ababgia]} = {la~ " bgeaa™ 07 [a 107 a ™ 01400,

we can substitute abab by a=1b~1g"'b~! and are in Case 1.

In Case 3 and Case 4, since
(Viu{r )\ R = {[abs,a'¥'], [aba'bs 1]} = {[a"bgraa™ 0] [0 a0, 11,
we can substitute aba’b’ by a’~'b~la~1d’~! and are in Case 1 and Case 2, respec-
tively.

Thus, we have shown that the only two elements Uy, Vi of ¥g(R) in which 7
does not appear, are no elements of ¥3(7), and therefore ¥g(R) N¢g(T) =0. O

Lemma 5. Let U € Ry g41. Then U € ¢g(R) for some R € Ry g.

Proof. Let U = {u1,...,ugy1} € Ry g+1. By the link condition, the label bgi; or
bEj_l appears either in exactly one or in exactly two elements (geometric squares)
of U.

Case 1: Suppose that the label bg4q or bgj_l appears in exactly one element of
U, say in ug4q. Then either

ugi1 = [arbgriay 'bgl]
or
upr1 = [arbgrra1bs ]
or
Up+1 = [albg+1al_lb5+1].
Let R := {u1,...,ug} = U\ {ug41}. Note that R € Ry g, since Lk(U) = K2 23+2
and ug41 contributes to Lk(U) the four edges

{a;17 bﬁ+1}7 {aflﬁ b[;Jlrl}a {alv bEJlrl}’ {ala bﬂ+1}7

independently of the three possibilities for ugy;. By definition of @[Jél) we have
U e vy (R) C vs(R).
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Case 2: Suppose that the label bg;; or bg}rl appears in ug and ug41, but in
no other element of U. Tt follows that ug = [abgi1a’'] for some a,a’ € {a1,a; '}

and b € Bgl. In particular b # bgt1 and b’ # bgil, otherwise we would be in

Case 1. Looking at the link of {ui,...,ug} = U \ {ug4+1}, we see that the two
edges {a™!,bs41} and {d/, bg}rl} in this link (and two other edges not involving the
label bg11 or bgil) are contributed by ug. The edges contributed by {u1,...,ug_1}
do not involve by or bE-il-l' Therefore, the two edges {a,bs+1} and {a’*l,bE}H}
(and two other edges not involving the label bgy; or b/;-&l-l) are missing to get the
complete bipartite graph Ksopyo = Lk(U). Hence ugyi; = [aba'bgil] for some
b€ B5'. Let R:= {uy,...,ug_1,laba’b']}. Then R € Ry (i.e. Lk(R) = K3 25),
since
Kz op12 = Lk(U) = Lk({uy, ..., up_1, [abg1a't'], [aba'by]})

= Lk({u1,...,ug_1,[aba’t'], [abg_,_la’bg_il_l]})

= Lk(RU {[abgi1a'bgi,]}).
By construction of R and the definition of wg), we have U € z/JEf) (R) C yp(R). O
Corollary 6. For 8 € N we have

U vs(R) = Ripa,
ReR, g

in particular the set Ry g1 can be explicitly constructed from Ri g using 3.

Proof. Lemma 2 shows that
U vs(R) CRigpa
ReR: g

Moreover, we have

U ¢s(R) 2 Ripn
RER; 3

by Lemma 5. (]

Note that the union in Corollary 6 is a disjoint union by Lemma 4. Now, we are
able to prove Kimberley’s conjecture on the number of (1, 3)-BM relations.

Theorem 7. ([3, Conjecture 193]) For every positive integer (3, the number of
(1, B)-BM relations is
B

Ryl =]](2i+1).

i=1
Proof. By Lemma 3 and Lemma 5
[R1p41] < (3+208)|Rul.
By Lemma 3 and Lemma 4
|R1,g41] = (3+206)[Rasl,

hence
|R1 41| = (3 +28)|Ry gl
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The proof of the theorem is now by induction on 3. If g = 1, then

Rix = {{[arbray 071}, {larbraidy '}, {[arbiay Mo} }
and |R1 1] = 3. Assume that the statement of the theorem holds for 3. Then

B8 B+1
Ripstl = 3+ 20)|Rusl = 26+ 1)+ ) [ (2i +1) = [[(2i +1).

i=1 i=1

3. CLASSIFICATION OF (2,2)-BM GROUPS
Let Ty, I'so, I's, T'1o be the (2,2)-BM groups
Ty = {(a,b,c,d | acac™, adad™", bebd, be™bd ™),
I'so = (a,b,¢,d | acad, ac” ad ™, bebd, be™tbd 1),
I's = {(a,b,c,d | acac™, adad™", beb™ e, bdb™'d),
T'io = {a,b,c,d | acac™, ada™'d, bebe™, bdb~d ™).
(To simplify the notation, we use here the letters a, b, ¢, d instead of a1, as,b1,ba.)
We will prove that I'y is isomorphic to I'3g, and that I's is isomorphic to I'yg.
To find these isomorphisms we have written a program with GAP ([2]) using the

normal form program developed in [5, Chapter B.6] and the knowledge of the orders
of elements in the abelianizations of the four groups.

Proposition 8. The groups I'y and I'sg are isomorphic.

Proof. Let n : Ty — T'39 be the homomorphism given by n(a) = ab, n(b) = a,
n(c) = ac and n(d) = da~*'. Tt is a homomorphism since
n(acac™) = abacabc™'a™ = abaa~'d"'bad = abd'bad = acad = 1,
n(adad™") = abda™'abad™ = abdbad ™" = abb~'c tad ' = ac tad™t =1,
n(bebd) = aacada™ = aaa™*d " 'da' =1,
n(bc'bd™) = acta taad ™! = actad™! =1,
using the four defining relations of I'sg.
n is surjective: a = n(b), b =n(b~'a), c = n(b='c), d = n(db).
Let 6 : I'3yp — I'y be the homomorphism given by 6(a) = b, 6(b) = b~ la,
9(c) = b~1c and 0(d) = db. It is a homomorphism since
(acad) = bb~*cbdb = cbdb = 1,
O(acrad™t) = be bbbt = betbd T =1,
O(bebd) = b tab"teb tadb = b tab tbdtda b = 1,
O(bc™bd™) = b tac b tabtd T = b e ta e M = b e b T = 1,
using the four defining relations of I'y.
The composition 0 o ) is the identity on I'y, since

0(n(a)) = O(ab) =bb~'a =a,
0(n(b)) = 0(a) = b,
0(n(c)) = O(ac) = bb~'c = c,
O(n(d)) = O(da™") = dbb™! = d,
hence 7 is injective and an isomorphism. (I
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Proposition 9. The groups I's and I'1g are isomorphic.
Proof. As in the proof of Proposition 8, it is easy to show that ¢ : I's — I'1g defined
by p(a) =d, p(b) = ac, ¢(c) = a, ¢(d) = ab is an isomorphism. O

Corollary 10. There are exactly 41 (2,2)-BM groups up to isomorphism.

Proof. By [3, Proposition 222] there are at least 41 isomorphism classes of (2, 2)-
BM groups. By [3, Proposition 231] there are at most 43 isomorphism classes of
(2,2)-BM groups (including the isomorphism classes of I'y, I'sg, I's and I'1o). Now
use Proposition 8 and Proposition 9 to reduce the number of isomorphism classes
from 43 to 41. ([l

4. APPENDIX: ILLUSTRATION OF %3 FOR =1 AND 3 =2

In this appendix we first use the map v to determine

U #1(R) = R

ReER1 1
Recall that
Ry = {{[arbia; b7 ']}, {[arbrasby ']}, {[arbray "01]} ).
By definition of wgl) and 1/19, we have
Y ({lasbrar o7 '1}) = {{lasbras b7, [arbaay 'y},
{[alblal 151 1]7 [aleGlb ]}
{larbray "oy "], [arbaa; 'ba]}
WP ({larbray by '} = {{[albwl 1b1 1, laxbrag b3 1},
{[alb al 1], [alblal bg]}}

albwl—lbz_l}}y
21
}}

e {larbrarby ']} = {{laabrardy ],

—~

IS

S
o

S
IS

=

o

S

albglaflbl], [alblaflbg]}}.
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Taking the union of these six sets, we therefore obtain

Ry = {{[arbray 'b7 '], [arboay "0 T}, {[arbray by '], [arboas by ']},

[

[ ay by 1] la1bray bz]} {la1braiby ] [arbaa; b3 ']},
[a1b1a1by '], [arbaarby ']}, {[arbraby '], [arbaai 'bo]},
[a1b2a1by ]7 [a1b1a1b§1]}, {[a1b;1a1b1’1], [a1b1a1bs]},
[alblal bl], [aleaflbgl]}, {[alblal_lbl], [albzalbz_l]},
[arbiay "b1], [arbaay 'ba]}, {[arbaa; 'b1], [arbiay 'b3 ']},
{la1by "ay 'by], [arbiay "bo]}}

and |Rj 2| = 15. These 15 (1,2)-BM relations are also listed in [3, Table 7].

To illustrate what happens in the case 8 = 2, we take for example
R = {[alblal_lbl_l], [aleaflbgl]} € RLQ,

and get seven (1, 3)—BM relations

1

[2

3

4

[5

6

[7]

ViV (R) = {{larbray 'b7"], [arbay ! b2 ,larbzay 03]},
] [ , [a1bsar by n,
!

g

a1b1a1 albga

)

a1b1a1 a1b2a1

[
{l
{l
éQ)(R) = {{[a1b3a1 by
{l
{l
{l

)

1

21

511, [arbsay ths 1}
70151611 ]a[a1b2a1 by ]}

s, [ b

30 |2

I ¥

arbz tay b, [arbiay ths], [arbaay by

albgal 2 ] [a1b2a1

]
y alblal_lb 1]
g

-

a163 al 2 ] [a1b2a1 bg, alblal_lb
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