COUNTING $(1, \beta)$ -BM RELATIONS AND CLASSIFYING (2, 2)-BM GROUPS

DIEGO RATTAGGI

ABSTRACT. In the first part, we prove that the number of $(1, \beta)$ -BM relations is $3 \cdot 5 \cdot \ldots \cdot (2\beta + 1)$, which was conjectured by Jason Kimberley. In the second part, we construct two isomorphisms between certain (2, 2)-BM groups. This completes the classification of (2, 2)-BM groups initiated in [4].

1. INTRODUCTION

Let \mathcal{T}_r be the *r*-regular tree and $\operatorname{Aut}(\mathcal{T}_r)$ its group of automorphisms. If $\alpha, \beta \in \mathbb{N}$, an (α, β) -*BM group* is a torsion-free subgroup of $\operatorname{Aut}(\mathcal{T}_{2\alpha}) \times \operatorname{Aut}(\mathcal{T}_{2\beta})$ acting freely and transitively on the vertex set of the affine building $\mathcal{T}_{2\alpha} \times \mathcal{T}_{2\beta}$.

The class of (α, β) -BM groups includes for example $F_{\alpha} \times F_{\beta}$ (the direct product of free groups of rank α and β), but also more complicated groups, like groups containing a finitely presented, torsion-free, simple subgroup of finite index, if α and β are large enough, see [1, Theorem 6.4]. The first (and only known) examples of finitely presented, torsion-free, simple groups have been found in this way. See also [7, Section II.5] for a non-residually finite (4,3)-BM group, [6, Example 2.3] for a (3,3)-BM group having no non-trivial normal subgroups of infinite index, and [6, Example 3.4] for a (6,4)-BM group having a subgroup of index 4 which is finitely presented, torsion-free, and simple.

An equivalent definition for an (α, β) -BM group is the following (the equivalence is shown in [4, Theorem 3.4]): Let $A_{\alpha} = \{a_1, \ldots, a_{\alpha}\}, B_{\beta} = \{b_1, \ldots, b_{\beta}\}, a, a' \in A_{\alpha}^{\pm 1}$, and $b, b' \in B_{\beta}^{\pm 1}$. We think of the elements in $A_{\alpha}^{\pm 1}$ as oriented horizontal edges and the elements in $B_{\beta}^{\pm 1}$ as oriented vertical edges. A geometric square [aba'b'] is a set (consisting of a usual oriented square aba'b' and reflections along its edges)

$$aba'b'] := \{aba'b', a'b'ab, a^{-1}b'^{-1}a'^{-1}b^{-1}, a'^{-1}b^{-1}a^{-1}b'^{-1}\}.$$

See Figure 1 for an illustration of the geometric square [aba'b'].

It is easy to check that

$$[aba'b'] = [a'b'ab] = [a^{-1}b'^{-1}a'^{-1}b^{-1}] = [a'^{-1}b^{-1}a^{-1}b'^{-1}].$$

Let $GS_{\alpha,\beta}$ be the set of all such geometric squares.

$$GS_{\alpha,\beta} := \{ [aba'b'] : a, a' \in A_{\alpha}^{\pm 1}, b, b' \in B_{\beta}^{\pm 1} \}.$$

Given a subset $S \subseteq GS_{\alpha,\beta}$, the link Lk(S) is an undirected graph with vertex set $A_{\alpha}^{\pm 1} \sqcup B_{\beta}^{\pm 1}$ and edges $\{a^{-1}, b\}, \{a', b^{-1}\}, \{a'^{-1}, b'\}, \{a, b'^{-1}\}$ for each geometric square $[aba'b'] \in S$. These edges in the link correspond to the four corners in aba'b'. An (α, β) -BM relation is a set R consisting of exactly $\alpha\beta$ geometric squares in

Date: July 5, 2006.

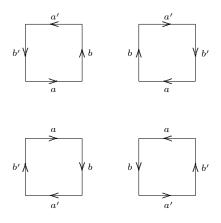


FIGURE 1. The geometric square [aba'b'], represented by each of these four squares.

 $GS_{\alpha,\beta}$ such that Lk(R) is the complete bipartite graph $K_{2\alpha,2\beta}$ (where the bipartite structure is induced by the decomposition $A_{\alpha}^{\pm 1} \sqcup B_{\beta}^{\pm 1}$). This link condition for R means that for any given $a \in A_{\alpha}^{\pm 1}$, $b \in B_{\beta}^{\pm 1}$, there are unique $a' \in A_{\alpha}^{\pm 1}$, $b' \in B_{\beta}^{\pm 1}$ such that $[aba'b'] \in R$. It also excludes the existence of geometric squares of the form [abab] in an (α, β) -BM relation by a simple counting argument $(K_{2\alpha,2\beta}$ has $2\alpha + 2\beta$ vertices and $2\alpha \cdot 2\beta = 4\alpha\beta$ edges, so each of the $\alpha\beta$ geometric squares in R has to contribute four distinct edges, but [abab] only contributes the two edges $\{a^{-1}, b\}$ and $\{a, b^{-1}\}$). We denote by $R_{\alpha,\beta}$ the set of (α, β) -BM relations. Any group Γ with a finite presentation $\langle A_{\alpha} \cup B_{\beta} \mid R \rangle$, where $R \in R_{\alpha,\beta}$, is called an (α, β) -BM group. Note that any of the four squares representing a geometric square induces the same relation in Γ , and that therefore any (α, β) -BM group has a presentation with $\alpha + \beta$ generators and $\alpha\beta$ relations of the form aba'b'.

The cardinality of $R_{\alpha,\beta}$ (i.e. the number of (α,β) -BM relations) has been computed for a finite number of small pairs (α,β) in [5, Table B.3] and independently with a different method in [3, Table 4], see Table 1.

In the smallest case, we have $|R_{1,1}| = 3$, since

$$R_{1,1} = \left\{ \{ [a_1b_1a_1^{-1}b_1^{-1}] \}, \{ [a_1b_1a_1b_1^{-1}] \}, \{ [a_1b_1a_1^{-1}b_1] \} \right\},\$$

using the observation that

$$\{[a_1b_1a_1b_1]\} = \{[a_1^{-1}b_1^{-1}a_1^{-1}b_1^{-1}]\} \notin R_{1,1}$$

and

$$\{[a_1b_1^{-1}a_1b_1^{-1}]\} = \{[a_1^{-1}b_1a_1^{-1}b_1]\} \notin R_{1,1}.$$

In general, let's say if $\alpha\beta > 10$, the value $|R_{\alpha,\beta}|$ is not known, but Kimberley has conjectured in [3, Conjecture 193] that $|R_{1,\beta}| = 3 \cdot 5 \cdot \ldots \cdot (2\beta + 1)$ for all $\beta \in \mathbb{N}$. We will prove this conjecture in Section 2. Observe that $|R_{\alpha,\beta}| = |R_{\beta,\alpha}|$ and therefore $|R_{\alpha,1}| = 3 \cdot 5 \cdot \ldots \cdot (2\alpha + 1)$ for all $\alpha \in \mathbb{N}$.

Each element $R \in R_{\alpha,\beta}$ defines the (α,β) -BM group $\langle A_{\alpha} \cup B_{\beta} | R \rangle$. Of course, it is possible that distinct (α,β) -BM relations define isomorphic (α,β) -BM group, for example (taking $\alpha = \beta = 1$)

$$\langle a_1, b_1 \mid a_1 b_1 a_1 b_1^{-1} \rangle \cong \langle a_1, b_1 \mid a_1 b_1 a_1^{-1} b_1 \rangle$$

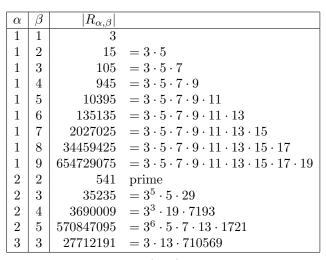


TABLE 1. Number of (α, β) -BM relations, $\alpha \leq \beta$.

whereas $\{[a_1b_1a_1b_1^{-1}]\} \neq \{[a_1b_1a_1^{-1}b_1]\}$. The classification of (α, β) -BM groups up to isomorphism seems to be a hard problem in general (even if the set $R_{\alpha,\beta}$ is known). It has been done by Kimberley in [3, Chapter 5] for $(1,\beta)$ -BM groups, if $\beta \in \{1,\ldots,5\}$. Moreover, Kimberley and Robertson have proved that there are at least 41 and at most 43 (2,2)-BM groups up to isomorphism, see [4, Section 7] and [3, Chapter 5]. Starting from a reservoir of $|R_{2,2}| = 541$ (2,2)-BM relations, the lower bound was achieved by computing the abelianizations of the corresponding (2,2)-BM groups, and the abelianizations of subgroups of low index. The upper bound comes from constructing isomorphisms via generator permutations and Tietze transformations. It remained the open question whether the group Γ_4 is isomorphic to Γ_{30} and whether Γ_5 is isomorphic to Γ_{10} (these four (2, 2)-BM groups will be defined in Section 3). We will give a positive answer by constructing explicit isomorphism, such that there are in fact exactly 41 (2, 2)-BM groups up to isomorphism. If $\alpha, \beta \geq 2$, no other complete classification of (α, β) -BM groups is known so far.

2. Counting $(1,\beta)$ -BM relations

In this section, we will define a map ψ_{β} which associates to any $(1, \beta)$ -BM relation $R \in R_{1,\beta}$ a set $\psi_{\beta}(R) = \psi_{\beta}^{(1)}(R) \cup \psi_{\beta}^{(2)}(R)$ consisting of $3+2\beta$ distinct $(1,\beta+1)$ -BM relations (see Lemma 2 and Lemma 3). These $3+2\beta$ elements are either obtained by adding to R a single new geometric square, or by first removing from R one of the β geometric squares and then adding two suitably chosen new geometric squares. Distinct elements R, T in $R_{1,\beta}$ will produce disjoint sets $\psi_{\beta}(R), \psi_{\beta}(T)$ (see Lemma 4). Moreover, any $(1, \beta + 1)$ -BM relation can be obtained by ψ_{β} (see Lemma 5). This allows us to compute inductively the exact number of $(1, \beta)$ -BM relations for any $\beta \in \mathbb{N}$, and therefore to prove Kimberley's conjecture.

Let $R = \{r_1, \ldots, r_\beta\} \in R_{1,\beta}$, i.e. r_1, \ldots, r_β are β geometric squares in $GS_{1,\beta}$ satisfying the link condition $Lk(\{r_1, \ldots, r_\beta\}) = K_{2,2\beta}$. We first define

$$\begin{split} \psi_{\beta}^{(1)}(R) &:= \big\{\{r_1, \dots, r_{\beta}, [a_1b_{\beta+1}a_1^{-1}b_{\beta+1}^{-1}]\},\\ &\{r_1, \dots, r_{\beta}, [a_1b_{\beta+1}a_1b_{\beta+1}^{-1}]\},\\ &\{r_1, \dots, r_{\beta}, [a_1b_{\beta+1}a_1^{-1}b_{\beta+1}]\}\big\}, \end{split}$$

a set consisting of three distinct $(1, \beta + 1)$ -BM relations.

If $[aba'b'] \in GS_{1,\beta}$, we define

$$\phi_{\beta}([aba'b']) := \left\{ \{ [ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}] \}, \{ [ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}] \} \right\}.$$

Lemma 1. The map ϕ_{β} is well-defined.

Proof. We have to show

$$\phi_{\beta}([aba'b']) = \phi_{\beta}([a'b'ab]) = \phi_{\beta}([a^{-1}b'^{-1}a'^{-1}b^{-1}]) = \phi_{\beta}([a'^{-1}b^{-1}a^{-1}b'^{-1}]).$$

Let $v_1 := [ab_{\beta+1}a'b'], v_2 := [aba'b_{\beta+1}^{-1}], v_3 := [ab_{\beta+1}^{-1}a'b']$ and $v_4 := [aba'b_{\beta+1}]$, such that we have $\{v_1, v_2, v_3, v_4\} \subset GS_{1,\beta+1}$ and $\phi_{\beta}([aba'b']) = \{\{v_1, v_2\}, \{v_3, v_4\}\}.$

We check that

$$\begin{split} \phi_{\beta}([a'b'ab]) &= \left\{ \{[a'b_{\beta+1}ab], [a'b'ab_{\beta+1}^{-1}] \}, \{[a'b_{\beta+1}^{-1}ab], [a'b'ab_{\beta+1}] \} \right\} \\ &= \left\{ \{v_4, v_3\}, \{v_2, v_1\} \} = \phi_{\beta}([aba'b']), \\ \phi_{\beta}([a^{-1}b'^{-1}a'^{-1}b^{-1}]) &= \left\{ \{[a^{-1}b_{\beta+1}a'^{-1}b^{-1}], [a^{-1}b'^{-1}a'^{-1}b_{\beta+1}] \} \right\} \\ &= \left\{ \{v_2, v_1\}, \{v_4, v_3\} \right\} = \phi_{\beta}([aba'b']), \\ \phi_{\beta}([a'^{-1}b^{-1}a^{-1}b'^{-1}]) &= \left\{ \{[a'^{-1}b_{\beta+1}a^{-1}b'^{-1}], [a'^{-1}b^{-1}a^{-1}b_{\beta+1}] \} \right\} \\ &= \left\{ \{v_3, v_4\}, \{v_1, v_2\} \right\} = \phi_{\beta}([aba'b']). \end{split}$$

See Figure 2 for a visualization of the map ϕ_{β} .

We now construct the set $\psi_{\beta}^{(2)}(R)$ consisting of 2β distinct $(1, \beta+1)$ -BM relations (as we will prove later). Let

$$\psi_{\beta}^{(2)}(R) := \bigcup_{i=1}^{\beta} \left(\bigcup_{P \in \phi_{\beta}(r_i)} \left\{ P \cup (R \setminus \{r_i\}) \right\} \right).$$

Note that if $r_i = [aba'b']$ then by definition of ϕ_β

$$\bigcup_{P \in \phi_{\beta}(r_i)} \left\{ P \cup (R \setminus \{r_i\}) \right\} =$$

 $\big\{\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\} \cup (R \setminus \{r_i\}), \{[ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}]\} \cup (R \setminus \{r_i\})\big\}.$ Finally, let

$$\psi_{\beta}(R) := \psi_{\beta}^{(1)}(R) \cup \psi_{\beta}^{(2)}(R)$$

See Section 4 for an explicit construction of the map ψ_{β} in the case $\beta = 1$ and $\beta = 2$.

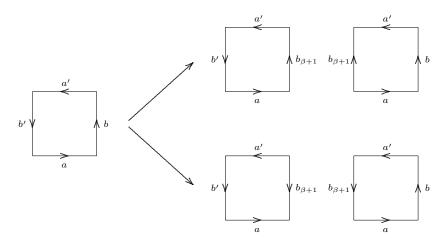


FIGURE 2. The map ϕ_{β} associates to the geometric square $[aba'b'] \in GS_{1,\beta}$ (represented on the left) the two geometric squares in $GS_{1,\beta+1}$ represented on top right, and the two geometric squares in $GS_{1,\beta+1}$ represented on bottom right, respectively.

Lemma 2. If $R \in R_{1,\beta}$, then the elements in $\psi_{\beta}(R)$ are $(1, \beta + 1)$ -BM relations. *Proof.* The statement is clear for the three elements in $\psi_{\beta}^{(1)}(R)$ looking at their link.

To show it for the elements in $\psi_{\beta}^{(2)}(R)$, first note that

$$[ab_{\beta+1}a'b'] \neq [aba'b_{\beta+1}^{-1}] \ (= [a^{-1}b_{\beta+1}a'^{-1}b^{-1}])$$

and

$$[ab_{\beta+1}^{-1}a'b'] \neq [aba'b_{\beta+1}] \; (= [a^{-1}b_{\beta+1}^{-1}a'^{-1}b^{-1}]).$$

Therefore each element in $\psi_{\beta}^{(2)}(R)$ consists of $\beta + 1$ geometric squares in $GS_{1,\beta+1}$. Let $R = \{r_1, \ldots, r_{\beta}\} \in R_{1,\beta}$, fix any $i \in \{1, \ldots, \beta\}$, and suppose that $r_i = [aba'b']$. Since $Lk(R) = K_{2,2\beta}$, we have

$$Lk(\{r_1, \dots, r_{\beta}, [ab_{\beta+1}a'b_{\beta+1}^{-1}]\}) = K_{2,2\beta+2},$$

independently of $a, a' \in \{a_1, a_1^{-1}\} = A_1^{\pm 1}$. Since $r_i = [aba'b']$, we can write this as

$$K_{2,2\beta+2} = Lk(\{[aba'b'], [ab_{\beta+1}a'b_{\beta+1}^{-1}]\} \cup (R \setminus \{r_i\})),$$

which can directly be seen to be equal to

$$Lk(\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\} \cup (R \setminus \{r_i\})),$$

since the edges in $Lk(\{[aba'b'], [ab_{\beta+1}a'b_{\beta+1}^{-1}]\})$ are

$$\begin{split} &\{a^{-1},b\},\{a',b^{-1}\},\{a'^{-1},b'\},\{a,b'^{-1}\},\\ &\{a^{-1},b_{\beta+1}\},\{a',b_{\beta+1}^{-1}\},\{a'^{-1},b_{\beta+1}^{-1}\},\{a,b_{\beta+1}\}, \end{split}$$

which are also the edges in $Lk(\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\})$. In fact, we have performed a link preserving surgery as described more generally in [1, Section 6.2.2].

DIEGO RATTAGGI

Similarly (interchanging $b_{\beta+1}$ and $b_{\beta+1}^{-1}$) one proves that

$$Lk(\{[ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}]\} \cup (R \setminus \{r_i\})) = K_{2,2\beta+2}.$$

Lemma 3. If $R \in R_{1,\beta}$, then $|\psi_{\beta}(R)| = 3 + 2\beta$.

Proof. Clearly $|\psi_{\beta}^{(1)}(R)| = 3.$

The label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$ appears in exactly one geometric square of each element in $\psi_{\beta}^{(1)}(R)$, but in exactly two geometric squares of each element in $\psi_{\beta}^{(2)}(R)$, hence we conclude

$$\psi_{\beta}^{(1)}(R) \cap \psi_{\beta}^{(2)}(R) = \emptyset$$

Let $R = \{r_1, \ldots, r_\beta\}$. Fix any $i \in \{1, \ldots, \beta\}$ and suppose that $r_i = [aba'b']$. The geometric square r_i only misses in the two elements

$$\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\} \cup (R \setminus \{r_i\})$$

and

$$\{[ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}]\} \cup (R \setminus \{r_i\})$$

of $\psi_{\beta}^{(2)}(R)$. Suppose that they are equal. Then

$$\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\} = \{[ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}]\}.$$

It follows that

$$[ab_{\beta+1}a'b'] = [aba'b_{\beta+1}] (= [a'b_{\beta+1}ab]),$$

since $[ab_{\beta+1}a'b'] \neq [ab_{\beta+1}^{-1}a'b']$, but then a = a' and b = b'. This is impossible, since $[abab] \notin R \in R_{1,\beta}$. This shows that the 2β elements in $\psi_{\beta}^{(2)}(R)$ are distinct, and we get

$$|\psi_{\beta}(R)| = |\psi_{\beta}^{(1)}(R) \cup \psi_{\beta}^{(2)}(R)| = |\psi_{\beta}^{(1)}(R)| + |\psi_{\beta}^{(2)}(R)| - |\psi_{\beta}^{(1)}(R) \cap \psi_{\beta}^{(2)}(R)| = 3 + 2\beta.$$

Lemma 4. If $R, T \in R_{1,\beta}$ and $R \neq T$, then $\psi_{\beta}(R) \cap \psi_{\beta}(T) = \emptyset$.

Proof. Let $R = \{r_1, \ldots, r_\beta\}$ and $T = \{t_1, \ldots, t_\beta\}$. We suppose without loss of generality that $r_1 = [aba'b'] \notin T$. Then r_1 appears in no element of $\psi_\beta(T)$, but appears in each element of $\psi_\beta(R)$ except in

$$U_1 := \{ [ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}] \} \cup (R \setminus \{r_1\}) \in \psi_{\beta}^{(2)}(R)$$

and

$$V_1 := \{ [ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}] \} \cup (R \setminus \{r_1\}) \in \psi_{\beta}^{(2)}(R)$$

We want to show by contradiction that $U_1, V_1 \notin \psi_{\beta}(T)$. It is clear that $U_1, V_1 \notin \psi_{\beta}^{(1)}(T)$. Fix any $i \in \{1, \ldots, \beta\}$ and let $t_i = [\check{a}\check{b}\hat{a}\hat{b}]$, where $\check{a}, \hat{a} \in \{a_1, a_1^{-1}\}$ and $\check{b}, \hat{b} \in B_{\beta}^{\pm 1}$. We suppose that $U_1 \in \psi_{\beta}^{(2)}(T)$ or $V_1 \in \psi_{\beta}^{(2)}(T)$ and have therefore to consider four cases:

Case 1: Suppose that

$$U_1 = \{ [\breve{a}b_{\beta+1}\hat{a}\hat{b}], [\breve{a}\breve{b}\hat{a}b_{\beta+1}^{-1}] \} \cup (T \setminus \{t_i\}).$$

Then $R \setminus \{r_1\} = T \setminus \{t_i\}$ and

$$\{[ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\} = \{[\breve{a}b_{\beta+1}\hat{a}\hat{b}], [\breve{a}\breve{b}\hat{a}b_{\beta+1}^{-1}]\}$$

6

7

Case 1.1: If $[ab_{\beta+1}a'b'] = [\check{a}b_{\beta+1}\hat{a}\hat{b}]$ and $[aba'b_{\beta+1}^{-1}] = [\check{a}\check{b}\hat{a}b_{\beta+1}^{-1}]$, then $a = \check{a}$, $b = \check{b}$, $a' = \hat{a}$ and $b' = \hat{b}$. This implies $t_i = [aba'b'] = r_1$, hence R = T, a contradiction.

Case 1.2: If

$$[ab_{\beta+1}a'b'] = [\breve{a}\breve{b}\hat{a}b_{\beta+1}^{-1}] \ (= [\breve{a}^{-1}b_{\beta+1}\hat{a}^{-1}\breve{b}^{-1}])$$

and

$$[aba'b_{\beta+1}^{-1}] = [\breve{a}b_{\beta+1}\hat{a}\hat{b}] \ (= [\breve{a}^{-1}\hat{b}^{-1}\hat{a}^{-1}b_{\beta+1}^{-1}]),$$

then $a = \breve{a}^{-1}$, $b = \hat{b}^{-1}$, $a' = \hat{a}^{-1}$ and $b' = \breve{b}^{-1}$. This implies

$$t_i = [a^{-1}b'^{-1}a'^{-1}b^{-1}] = [aba'b'] = r_1$$

and again the contradiction R = T.

The three remaining cases

Case 2: $U_1 = \{ [\breve{a}b_{\beta+1}^{-1}\hat{a}\hat{b}], [\breve{a}\breve{b}\hat{a}b_{\beta+1}] \} \cup (T \setminus \{t_i\})$

Case 3: $V_1 = \{ [\check{a}b_{\beta+1}\hat{a}\hat{b}], [\check{a}\check{b}\hat{a}b_{\beta+1}^{-1}] \} \cup (T \setminus \{t_i\})$

Case 4: $V_1 = \{ [\breve{a}b_{\beta+1}^{-1}\hat{a}\hat{b}], [\breve{a}\breve{b}\hat{a}b_{\beta+1}] \} \cup (T \setminus \{t_i\})$

can be treated similarly. In fact we can reduce them to Case 1 as follows: In Case 2, since

$$\{[\check{a}b_{\beta+1}^{-1}\hat{a}\hat{b}], [\check{a}\check{b}\hat{a}b_{\beta+1}]\} = \{[\hat{a}^{-1}b_{\beta+1}\check{a}^{-1}\hat{b}^{-1}], [\hat{a}^{-1}\check{b}^{-1}\check{a}^{-1}b_{\beta+1}^{-1}]\},\$$

we can substitute $\check{a}\check{b}\hat{a}\hat{b}$ by $\hat{a}^{-1}\check{b}^{-1}\check{a}^{-1}\hat{b}^{-1}$ and are in Case 1.

In Case 3 and Case 4, since

$$(V_1 \cup \{r_1\}) \setminus R = \{[ab_{\beta+1}^{-1}a'b'], [aba'b_{\beta+1}]\} = \{[a'^{-1}b_{\beta+1}a^{-1}b'^{-1}], [a'^{-1}b^{-1}a^{-1}b_{\beta+1}^{-1}]\},$$

we can substitute aba'b' by $a'^{-1}b^{-1}a^{-1}b'^{-1}$ and are in Case 1 and Case 2, respectively.

Thus, we have shown that the only two elements U_1, V_1 of $\psi_{\beta}(R)$ in which r_1 does not appear, are no elements of $\psi_{\beta}(T)$, and therefore $\psi_{\beta}(R) \cap \psi_{\beta}(T) = \emptyset$. \Box

Lemma 5. Let $U \in R_{1,\beta+1}$. Then $U \in \psi_{\beta}(R)$ for some $R \in R_{1,\beta}$.

Proof. Let $U = \{u_1, \ldots, u_{\beta+1}\} \in R_{1,\beta+1}$. By the link condition, the label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$ appears either in exactly one or in exactly two elements (geometric squares) of U.

Case 1: Suppose that the label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$ appears in exactly one element of U, say in $u_{\beta+1}$. Then either

$$u_{\beta+1} = [a_1 b_{\beta+1} a_1^{-1} b_{\beta+1}^{-1}]$$

or

$$u_{\beta+1} = [a_1 b_{\beta+1} a_1 b_{\beta+1}^{-1}]$$

or

$$u_{\beta+1} = [a_1 b_{\beta+1} a_1^{-1} b_{\beta+1}].$$

Let $R := \{u_1, \ldots, u_\beta\} = U \setminus \{u_{\beta+1}\}$. Note that $R \in R_{1,\beta}$, since $Lk(U) = K_{2,2\beta+2}$ and $u_{\beta+1}$ contributes to Lk(U) the four edges

$$\{a_1^{-1}, b_{\beta+1}\}, \{a_1^{-1}, b_{\beta+1}^{-1}\}, \{a_1, b_{\beta+1}^{-1}\}, \{a_1, b_{\beta+1}\}, \{a_1, b_{\beta+1}\}, \{a_2, b_{\beta+1}\}, \{a_3, b_{\beta+1}\}, \{a_4, b_{\beta+1}\}, \{a_4, b_{\beta+1}\}, \{a_4, b_{\beta+1}\}, \{a_4, b_{\beta+1}\}, \{a_4, b_{\beta+1}\}, \{a_5, b_{\beta+1}\}, \{a_6, b_{\beta+1}\}, \{a_8, b_$$

independently of the three possibilities for $u_{\beta+1}$. By definition of $\psi_{\beta}^{(1)}$ we have $U \in \psi_{\beta}^{(1)}(R) \subset \psi_{\beta}(R)$.

DIEGO RATTAGGI

Case 2: Suppose that the label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$ appears in u_{β} and $u_{\beta+1}$, but in no other element of U. It follows that $u_{\beta} = [ab_{\beta+1}a'b']$ for some $a, a' \in \{a_1, a_1^{-1}\}$ and $b' \in B_{\beta}^{\pm 1}$. In particular $b' \neq b_{\beta+1}$ and $b' \neq b_{\beta+1}^{-1}$, otherwise we would be in Case 1. Looking at the link of $\{u_1, \ldots, u_{\beta}\} = U \setminus \{u_{\beta+1}\}$, we see that the two edges $\{a^{-1}, b_{\beta+1}\}$ and $\{a', b_{\beta+1}^{-1}\}$ in this link (and two other edges not involving the label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$) are contributed by u_{β} . The edges contributed by $\{u_1, \ldots, u_{\beta-1}\}$ do not involve $b_{\beta+1}$ or $b_{\beta+1}^{-1}$. Therefore, the two edges $\{a, b_{\beta+1}\}$ and $\{a'^{-1}, b_{\beta+1}^{-1}\}$ (and two other edges not involving the label $b_{\beta+1}$ or $b_{\beta+1}^{-1}$) are missing to get the complete bipartite graph $K_{2,2\beta+2} = Lk(U)$. Hence $u_{\beta+1} = [aba'b_{\beta+1}^{-1}]$ for some $b \in B_{\beta}^{\pm 1}$. Let $R := \{u_1, \ldots, u_{\beta-1}, [aba'b']\}$. Then $R \in R_{1,\beta}$ (i.e. $Lk(R) = K_{2,2\beta}$), since

$$\begin{aligned} K_{2,2\beta+2} &= Lk(U) = Lk(\{u_1, \dots, u_{\beta-1}, [ab_{\beta+1}a'b'], [aba'b_{\beta+1}^{-1}]\}) \\ &= Lk(\{u_1, \dots, u_{\beta-1}, [aba'b'], [ab_{\beta+1}a'b_{\beta+1}^{-1}]\}) \\ &= Lk(R \cup \{[ab_{\beta+1}a'b_{\beta+1}^{-1}]\}). \end{aligned}$$

By construction of R and the definition of $\psi_{\beta}^{(2)}$, we have $U \in \psi_{\beta}^{(2)}(R) \subset \psi_{\beta}(R)$. \Box

Corollary 6. For $\beta \in \mathbb{N}$ we have

$$\bigcup_{R \in R_{1,\beta}} \psi_{\beta}(R) = R_{1,\beta+1},$$

in particular the set $R_{1,\beta+1}$ can be explicitly constructed from $R_{1,\beta}$ using ψ_{β} .

Proof. Lemma 2 shows that

$$\bigcup_{R \in R_{1,\beta}} \psi_{\beta}(R) \subseteq R_{1,\beta+1}.$$

Moreover, we have

$$\bigcup_{R \in R_{1,\beta}} \psi_{\beta}(R) \supseteq R_{1,\beta+1}$$

by Lemma 5.

Note that the union in Corollary 6 is a *disjoint* union by Lemma 4. Now, we are able to prove Kimberley's conjecture on the number of $(1, \beta)$ -BM relations.

Theorem 7. ([3, Conjecture 193]) For every positive integer β , the number of $(1,\beta)$ -BM relations is

$$|R_{1,\beta}| = \prod_{i=1}^{\beta} (2i+1).$$

Proof. By Lemma 3 and Lemma 5

$$|R_{1,\beta+1}| \le (3+2\beta)|R_{1,\beta}|$$

By Lemma 3 and Lemma 4

$$|R_{1,\beta+1}| \ge (3+2\beta)|R_{1,\beta}|$$

hence

$$|R_{1,\beta+1}| = (3+2\beta)|R_{1,\beta}|.$$

The proof of the theorem is now by induction on β . If $\beta = 1$, then

$$R_{1,1} = \left\{ \{ [a_1b_1a_1^{-1}b_1^{-1}] \}, \{ [a_1b_1a_1b_1^{-1}] \}, \{ [a_1b_1a_1^{-1}b_1] \} \right\}$$

and $|R_{1,1}| = 3$. Assume that the statement of the theorem holds for β . Then

$$|R_{1,\beta+1}| = (3+2\beta)|R_{1,\beta}| = (2(\beta+1)+1)\prod_{i=1}^{\beta}(2i+1) = \prod_{i=1}^{\beta+1}(2i+1).$$

3. Classification of (2, 2)-BM groups

Let Γ_4 , Γ_{30} , Γ_5 , Γ_{10} be the (2, 2)-BM groups

$$\begin{split} \Gamma_4 &= \langle a, b, c, d \mid acac^{-1}, \ adad^{-1}, \ bcbd, \ bc^{-1}bd^{-1} \rangle, \\ \Gamma_{30} &= \langle a, b, c, d \mid acad, \ ac^{-1}ad^{-1}, \ bcbd, \ bc^{-1}bd^{-1} \rangle, \\ \Gamma_5 &= \langle a, b, c, d \mid acac^{-1}, \ adad^{-1}, \ bcb^{-1}c, \ bdb^{-1}d \rangle, \\ \Gamma_{10} &= \langle a, b, c, d \mid acac^{-1}, \ ada^{-1}d, \ bcbc^{-1}, \ bdb^{-1}d^{-1} \rangle. \end{split}$$

(To simplify the notation, we use here the letters a, b, c, d instead of a_1, a_2, b_1, b_2 .)

We will prove that Γ_4 is isomorphic to Γ_{30} , and that Γ_5 is isomorphic to Γ_{10} . To find these isomorphisms we have written a program with GAP([2]) using the normal form program developed in [5, Chapter B.6] and the knowledge of the orders of elements in the abelianizations of the four groups.

Proposition 8. The groups Γ_4 and Γ_{30} are isomorphic.

Proof. Let $\eta : \Gamma_4 \to \Gamma_{30}$ be the homomorphism given by $\eta(a) = ab, \eta(b) = a$, $\eta(c) = ac$ and $\eta(d) = da^{-1}$. It is a homomorphism since

$$\begin{split} \eta(acac^{-1}) &= abacabc^{-1}a^{-1} = abaa^{-1}d^{-1}bad = abd^{-1}bad = acad = 1, \\ \eta(adad^{-1}) &= abda^{-1}abad^{-1} = abdbad^{-1} = abb^{-1}c^{-1}ad^{-1} = ac^{-1}ad^{-1} = 1, \\ \eta(bcbd) &= aacada^{-1} = aaa^{-1}d^{-1}da^{-1} = 1, \\ \eta(bc^{-1}bd^{-1}) &= ac^{-1}a^{-1}aad^{-1} = ac^{-1}ad^{-1} = 1, \end{split}$$

using the four defining relations of Γ_{30} . η is surjective: $a = \eta(b), b = \eta(b^{-1}a), c = \eta(b^{-1}c), d = \eta(db).$ Let θ : $\Gamma_{30} \rightarrow \Gamma_4$ be the homomorphism given by $\theta(a) = b, \ \theta(b) = b^{-1}a$, $\theta(c) = b^{-1}c$ and $\theta(d) = db$. It is a homomorphism since

$$\theta(acad) = bb^{-1}cbdb = cbdb = 1,$$

$$\theta(ac^{-1}ad^{-1}) = bc^{-1}bbb^{-1}d^{-1} = bc^{-1}bd^{-1} = 1,$$

$$(bcbd) = b^{-1}cb^{-1}cb^{-1}cdb = b^{-1}cb^{-1}bd^{-1}dc^{-1}b = 1,$$

$$\begin{split} \theta(bcbd) &= b^{-1}ab^{-1}cb^{-1}adb = b^{-1}ab^{-1}bd^{-1}da^{-1}b = 1, \\ \theta(bc^{-1}bd^{-1}) &= b^{-1}ac^{-1}bb^{-1}ab^{-1}d^{-1} = b^{-1}c^{-1}a^{-1}ab^{-1}d^{-1} = b^{-1}c^{-1}b^{-1}d^{-1} = 1, \end{split}$$

using the four defining relations of Γ_4 .

The composition $\theta \circ \eta$ is the identity on Γ_4 , since

$$\begin{aligned} \theta(\eta(a)) &= \theta(ab) = bb^{-1}a = a, \\ \theta(\eta(b)) &= \theta(a) = b, \\ \theta(\eta(c)) &= \theta(ac) = bb^{-1}c = c, \\ \theta(\eta(d)) &= \theta(da^{-1}) = dbb^{-1} = d \end{aligned}$$

hence η is injective and an isomorphism.

}

9

DIEGO RATTAGGI

Proposition 9. The groups Γ_5 and Γ_{10} are isomorphic.

Proof. As in the proof of Proposition 8, it is easy to show that $\varphi : \Gamma_5 \to \Gamma_{10}$ defined by $\varphi(a) = d, \varphi(b) = ac, \varphi(c) = a, \varphi(d) = ab$ is an isomorphism. \Box

Corollary 10. There are exactly 41 (2,2)-BM groups up to isomorphism.

Proof. By [3, Proposition 222] there are at least 41 isomorphism classes of (2, 2)-BM groups. By [3, Proposition 231] there are at most 43 isomorphism classes of (2, 2)-BM groups (including the isomorphism classes of Γ_4 , Γ_{30} , Γ_5 and Γ_{10}). Now use Proposition 8 and Proposition 9 to reduce the number of isomorphism classes from 43 to 41.

4. Appendix: Illustration of ψ_{β} for $\beta = 1$ and $\beta = 2$

In this appendix we first use the map ψ_1 to determine

$$\bigcup_{R\in R_{1,1}}\psi_1(R)=R_{1,2}$$

Recall that

$$R_{1,1} = \left\{ \{ [a_1b_1a_1^{-1}b_1^{-1}] \}, \{ [a_1b_1a_1b_1^{-1}] \}, \{ [a_1b_1a_1^{-1}b_1] \} \right\}$$

By definition of $\psi_1^{(1)}$ and $\psi_1^{(2)}$, we have

$$\begin{split} \psi_1^{(1)}(\{[a_1b_1a_1^{-1}b_1^{-1}]\}) &= \big\{\{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1^{-1}b_2^{-1}]\}, \\ &\quad \{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1b_2^{-1}]\}, \\ &\quad \{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1^{-1}b_2]\}\big\}. \end{split}$$

$$\psi_1^{(2)}(\{[a_1b_1a_1^{-1}b_1^{-1}]\}) &= \big\{\{[a_1b_2a_1^{-1}b_1^{-1}], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\quad \{[a_1b_2^{-1}a_1^{-1}b_1^{-1}], [a_1b_1a_1^{-1}b_2]\}\big\}. \end{split}$$

$$\begin{split} \psi_1^{(1)}(\{[a_1b_1a_1b_1^{-1}]\}) &= \left\{\{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1^{-1}b_2^{-1}]\}, \\ &\quad \{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1b_2^{-1}]\}, \\ &\quad \{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1^{-1}b_2]\}\right\}, \\ \psi_1^{(2)}(\{[a_1b_1a_1b_1^{-1}]\}) &= \left\{\{[a_1b_2a_1b_1^{-1}], [a_1b_1a_1b_2^{-1}]\}, \\ &\quad \{[a_1b_2^{-1}a_1b_1^{-1}], [a_1b_1a_1b_2]\}\right\}. \end{split}$$

$$\begin{split} \psi_1^{(1)}(\{[a_1b_1a_1^{-1}b_1]\}) &= \left\{\{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1b_2^{-1}]\}, \\ &\{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1^{-1}b_2]\}\right\}. \end{split}$$

$$\psi_1^{(2)}(\{[a_1b_1a_1^{-1}b_1]\}) &= \left\{\{[a_1b_2a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_2^{-1}a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2]\}\right\}. \end{split}$$

10

Taking the union of these six sets, we therefore obtain

$$\begin{split} R_{1,2} &= \left\{ \{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1^{-1}b_2^{-1}]\}, \, \{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1b_2^{-1}]\}, \\ &\{[a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1^{-1}b_2]\}, \, \{[a_1b_2a_1^{-1}b_1^{-1}], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_2^{-1}a_1^{-1}b_1^{-1}], [a_1b_1a_1^{-1}b_2]\}, \, \{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1b_2^{-1}]\}, \, \{[a_1b_1a_1b_1^{-1}], [a_1b_2a_1^{-1}b_2]\}, \\ &\{[a_1b_2a_1b_1^{-1}], [a_1b_2a_1b_2^{-1}]\}, \, \{[a_1b_2^{-1}a_1b_1^{-1}], [a_1b_1a_1b_2]\}, \\ &\{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1^{-1}b_2^{-1}]\}, \, \{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1b_2^{-1}]\}, \\ &\{[a_1b_1a_1^{-1}b_1], [a_1b_2a_1^{-1}b_2]\}, \, \{[a_1b_2a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_2^{-1}a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2]\}, \, \{[a_1b_2a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_2^{-1}a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2]\}, \, \{[a_1b_2a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2^{-1}]\}, \\ &\{[a_1b_2^{-1}a_1^{-1}b_1], [a_1b_1a_1^{-1}b_2]\}\} \end{split}$$

and $|R_{1,2}| = 15$. These 15 (1, 2)-BM relations are also listed in [3, Table 7]. To illustrate what happens in the case $\beta = 2$, we take for example

 $R := \{ [a_1b_1a_1^{-1}b_1^{-1}], [a_1b_2a_1^{-1}b_2^{-1}] \} \in R_{1,2},$

and get seven (1, 3)-BM relations

$$\begin{split} \psi_{2}^{(1)}(R) &= \left\{ \{ [a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{2}^{-1}], [a_{1}b_{3}a_{1}^{-1}b_{3}^{-1}] \}, \\ &\{ [a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{2}^{-1}], [a_{1}b_{3}a_{1}b_{3}^{-1}] \}, \\ &\{ [a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{2}^{-1}], [a_{1}b_{3}a_{1}^{-1}b_{3}] \} \}. \\ \psi_{2}^{(2)}(R) &= \left\{ \{ [a_{1}b_{3}a_{1}^{-1}b_{1}^{-1}], [a_{1}b_{1}a_{1}^{-1}b_{3}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{2}^{-1}] \}, \\ &\{ [a_{1}b_{3}a_{1}^{-1}b_{1}^{-1}], [a_{1}b_{1}a_{1}^{-1}b_{3}], [a_{1}b_{2}a_{1}^{-1}b_{2}^{-1}] \}, \\ &\{ [a_{1}b_{3}a_{1}^{-1}b_{2}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{3}^{-1}], [a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}] \}, \\ &\{ [a_{1}b_{3}a_{1}^{-1}b_{2}^{-1}], [a_{1}b_{2}a_{1}^{-1}b_{3}], [a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}] \} \}. \end{split}$$

References

- Burger, Marc; Mozes, Shahar, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. No. 92(2000), 151–194(2001).
- [2] The GAP group, GAP Groups, Algorithms, and Programming, Version 4.4; 2004, http://www.gap-system.org
- [3] Kimberley, Jason S., Classifying Burger-Mozes groups and the algebras generated from their actions, forthcoming Ph.D. thesis, University of Newcastle, Australia, 2006.
- [4] Kimberley, Jason S.; Robertson, Guyan, Groups acting on products of trees, tiling systems and analytic K-theory, New York J. Math. 8(2002), 111–131 (electronic).
- [5] Rattaggi, Diego, Computations in groups acting on a product of trees: normal subgroup structures and quaternion lattices, Ph.D. thesis, ETH Zürich, 2004.
- [6] Rattaggi, Diego, A finitely presented torsion-free simple group, to appear in J. Group Theory, also available at arXiv:math.GR/0411546.
- [7] Wise, Daniel T., Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, Ph.D. thesis, Princeton University, 1996.
 - E-mail address: rattaggi@hotmail.com