AN INCOHERENT SIMPLE GROUP

DIEGO RATTAGGI

Abstract

We give an example of a finitely presented simple group containing a finitely generated subgroup which is not finitely presented.

A group is called coherent, if every finitely generated subgroup is finitely presented. The class of coherent groups for example includes free groups, surface groups, or 3 -manifold groups ([10]). On the other hand, the group $F_{2} \times F_{2}$ is incoherent ([11]), where F_{k} denotes the free group of rank k. This also follows from the subsequent result of Grunewald:

Proposition 1. (Grunewald [5, Proposition B]) Let F be a free group of rank $k \geq 2$, generated by $\left\{s_{1}, \ldots, s_{k}\right\}$. Let r_{1}, \ldots, r_{m} be words over $\left\{s_{1}, \ldots, s_{k}\right\}^{ \pm 1}$ and R their normal closure $\left\langle\left\langle r_{1}, \ldots, r_{m}\right\rangle\right\rangle_{F}$ in F. Let H be the group with presentation $\left\langle s_{1}, \ldots, s_{k} \mid r_{1}, \ldots, r_{m}\right\rangle$ and ϕ the canonical epimorphism $\phi: F \rightarrow H \cong F / R$. Let \bar{F} be a free group of rank k generated by $\left\{t_{1}, \ldots, t_{k}\right\}$ and ψ the isomorphism $F \rightarrow \bar{F}$, mapping s_{i} to $t_{i}, i=1, \ldots, k$. Let $\bar{H}=\left\langle t_{1}, \ldots, t_{k} \mid \psi\left(r_{1}\right), \ldots, \psi\left(r_{m}\right)\right\rangle$, and $\tilde{\psi}: H \rightarrow$ \bar{H} the isomorphism induced by ψ. Finally, let $\bar{\phi}$ be the canonical epimorphism $\bar{F} \rightarrow \bar{H} \cong \bar{F} / \psi(R)$ (see the commutative diagram below for a summary of this notation). Suppose that H is infinite and $R \neq\{1\}$. Then the group $\{(s, t) \in$ $F \times \bar{F}: \tilde{\psi}(\phi(s))=\bar{\phi}(t)\}$ is a subgroup of $F \times \bar{F}$ generated by the $k+m$ elements $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right),\left(r_{1}, 1\right), \ldots,\left(r_{m}, 1\right)$, but it is not finitely presented.

Diagram 1. The setup for Proposition 1

Our strategy will be to construct a finitely presented simple group Λ containing a subgroup isomorphic to $F_{2} \times F_{2}$. Proposition 1 then allows us to construct an explicit subgroup of Λ generated by three elements, which is not finitely presented. We first define a group Γ which will contain Λ as a normal subgroup of index 4 .

[^0]Let Γ be the group with finite presentation $\left\langle a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{5} \mid R_{\Gamma}\right\rangle$, where

$$
R_{\Gamma}:=\left\{\begin{array}{lllll}
a_{1} b_{1} a_{2}^{-1} b_{2}^{-1}, & a_{1} b_{2} a_{1}^{-1} b_{1}^{-1}, & a_{1} b_{3} a_{2}^{-1} b_{3}^{-1}, & a_{1} b_{4} a_{1}^{-1} b_{4}^{-1}, & a_{1} b_{5} a_{2}^{-1} b_{5}, \\
a_{1} b_{5}^{-1} a_{4} b_{5}^{-1}, & a_{1} b_{3}^{-1} a_{2}^{-1} b_{2}, & a_{1} b_{1}^{-1} a_{2}^{-1} b_{3}, & a_{2} b_{2} a_{2}^{-1} b_{1}^{-1}, & a_{2} b_{4} a_{2}^{-1} b_{4}^{-1}, \\
a_{2} b_{5} a_{5}^{-1} b_{5}, & a_{3} b_{1} a_{4}^{-1} b_{2}^{-1}, & a_{3} b_{2} a_{3}^{-1} b_{1}^{-1}, & a_{3} b_{3} a_{4}^{-1} b_{3}^{-1}, & a_{3} b_{4} a_{4} b_{4}, \\
a_{3} b_{5} a_{4} b_{4}^{-1}, & a_{3} b_{5}^{-1} a_{6}^{-1} b_{5}^{-1}, & a_{3} b_{4}^{-1} a_{4} b_{5}, & a_{3} b_{3}^{-1} a_{4}^{-1} b_{2}, & a_{3} b_{1}^{-1} a_{4}^{-1} b_{3}, \\
a_{4} b_{2} a_{4}^{-1} b_{1}^{-1}, & a_{5} b_{1} a_{5}^{-1} b_{1}^{-1}, & a_{5} b_{2} a_{5} b_{3}^{-1}, & a_{5} b_{3} a_{6}^{-1} b_{5}, & a_{5} b_{4} a_{5}^{-1} b_{4}^{-1}, \\
a_{5} b_{5} a_{6}^{-1} b_{2}^{-1}, & a_{5} b_{2}^{-1} a_{6} b_{3}, & a_{6} b_{1} a_{6}^{-1} b_{3}, & a_{6} b_{2} a_{6}^{-1} b_{4}^{-1}, & a_{6} b_{4} a_{6}^{-1} b_{1}
\end{array}\right\} .
$$

We have found Γ using programs written in GAP $([4])$. It is constructed such that simultaneously (compare to the proof of Theorem 5)

- $\Gamma<\operatorname{Aut}\left(\mathcal{T}_{12}\right) \times \operatorname{Aut}\left(\mathcal{T}_{10}\right)$, where $\operatorname{Aut}\left(\mathcal{T}_{k}\right)$ denotes the group of automorphisms of the k-regular tree \mathcal{T}_{k},
- Γ (as well as any finite index subgroup of Γ) does not have any non-trivial normal subgroup of infinite index by a theorem of Burger-Mozes ([3]),
- the subgroup $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}\right\rangle_{\Gamma}$ of Γ is not residually finite by a theorem of Wise ([12, Main Theorem II.5.5]), more precisely the element $a_{2} a_{1}^{-1} a_{3} a_{4}^{-1}$ is contained in each finite index subgroup of $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}\right\rangle_{\Gamma}$ and therefore in each finite index subgroup of Γ,
- the normal closure $\left\langle\left\langle a_{2} a_{1}^{-1} a_{3} a_{4}^{-1}\right\rangle\right\rangle_{\Gamma}$ has finite index in Γ,
- the subgroup $\left\langle a_{5}, a_{1} a_{2}^{-1}, b_{1}, b_{4}\right\rangle_{\Gamma}$ is isomorphic to $F_{2} \times F_{2}$.

The latter statement will follow from Lemma 4 below, using a well-known normal form for elements in Γ :

Lemma 2. (Bridson-Wise [2, Normal Form Lemma 4.3]) Any element $\gamma \in \Gamma$ can be written as $\gamma=\sigma_{a} \sigma_{b}=\sigma_{b}^{\prime} \sigma_{a}^{\prime}$, where $\sigma_{a}, \sigma_{a}^{\prime}$ are freely reduced words in the subgroup $\left\langle a_{1}, \ldots, a_{6}\right\rangle_{\Gamma}$ and $\sigma_{b}, \sigma_{b}^{\prime}$ are freely reduced words in $\left\langle b_{1}, \ldots, b_{5}\right\rangle_{\Gamma}$. The words $\sigma_{a}, \sigma_{a}^{\prime}, \sigma_{b}, \sigma_{b}^{\prime}$ are uniquely determined by γ. Moreover, $\left|\sigma_{a}\right|=\left|\sigma_{a}^{\prime}\right|$ and $\left|\sigma_{b}\right|=\left|\sigma_{b}^{\prime}\right|$, where $|\cdot|$ is the word length with respect to the standard generators $\left\{a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{5}\right\}^{ \pm 1}$ of Γ.

Note that Lemma 2 was proved in [2] for a certain class of fundamental groups of square complexes covered by a product of trees. The following two lemmas are a direct consequence of the uniqueness statement in Lemma 2.

Lemma 3. The subgroup $\left\langle a_{1}, \ldots, a_{6}\right\rangle_{\Gamma}$ is a free group of rank 6 , and $\left\langle b_{1}, \ldots, b_{5}\right\rangle_{\Gamma}$ is a free group of rank 5 .

Lemma 4. Let $a, \tilde{a} \in\left\langle a_{1}, \ldots, a_{6}\right\rangle_{\Gamma}$ and $b, \tilde{b} \in\left\langle b_{1}, \ldots, b_{5}\right\rangle_{\Gamma}$, such that $a b=b a$, $a \tilde{b}=\tilde{b} a, \tilde{a} b=b \tilde{a}$ and $\tilde{a} \tilde{b}=\tilde{b} \tilde{a}$. Then the $\operatorname{map}\langle a, \tilde{a}, b, \tilde{b}\rangle_{\Gamma} \rightarrow\langle a, \tilde{a}\rangle_{\Gamma} \times\langle b, \tilde{b}\rangle_{\Gamma}$, given by $a \mapsto(a, 1), \tilde{a} \mapsto(\tilde{a}, 1), b \mapsto(1, b), \tilde{b} \mapsto(1, \tilde{b})$ is an isomorphism of groups. In particular, if moreover $\langle a, \tilde{a}\rangle_{\Gamma} \cong F_{2}$ and $\langle b, \tilde{b}\rangle_{\Gamma} \cong F_{2}$, then $\langle a, \tilde{a}, b, \tilde{b}\rangle_{\Gamma} \cong F_{2} \times F_{2}$.

We define our main group Λ to be the kernel of the surjective homomorphism of groups

$$
\begin{aligned}
\varphi: \Gamma & \rightarrow \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
a_{1}, \ldots, a_{6} & \mapsto(1+2 \mathbb{Z}, 0+2 \mathbb{Z}), \\
b_{1}, \ldots, b_{5} & \mapsto(0+2 \mathbb{Z}, 1+2 \mathbb{Z}) .
\end{aligned}
$$

Theorem 5. The finitely presented group Λ is simple and incoherent. More precisely, the subgroup $\left\langle a_{5}^{2} b_{1}^{2}, a_{1} a_{2}^{-1} b_{4}^{2}, a_{5}^{2}\right\rangle_{\Gamma}<\Lambda$ is not finitely presented.
Proof. The simplicity of Λ follows similarly as in [8, Theorem 3.5], but we recall the main steps in the proof. First note that Γ is the fundamental group of a finite square complex X having a single vertex called x, having $6+5$ oriented loops (identified with $a_{1}, \ldots, a_{6}, b_{1}, \ldots, b_{5}$) and $6 \cdot 5$ squares (identified with the relators in R_{Γ}). Those 30 squares are carefully chosen such that several conditions simultaneously hold. For example, the link of x in X is a complete bipartite graph on $12+10$ vertices which correspond to $\left\{a_{1}, \ldots, a_{6}\right\}^{ \pm 1}$ and $\left\{b_{1}, \ldots, b_{5}\right\}^{ \pm 1}$. As a consequence, the universal covering space \tilde{X} is a product of two regular trees $\mathcal{T}_{12} \times \mathcal{T}_{10}$, and Γ is a subgroup of $\operatorname{Aut}\left(\mathcal{T}_{12}\right) \times \operatorname{Aut}\left(\mathcal{T}_{10}\right)$. The local actions on \mathcal{T}_{12} of the projection of Γ to the first factor $\operatorname{Aut}\left(\mathcal{T}_{12}\right)$ are described by finite permutation groups $P_{h}^{(k)}(\Gamma)<S_{12 \cdot 11^{k-1}}$, where $k \in \mathbb{N}$ (see [3, Chapter 1] or [8]). We compute for $k=1$

$$
\begin{aligned}
P_{h}^{(1)}(\Gamma)= & \langle(9,10)(11,12),(1,2)(3,4)(5,6,8),(1,2)(3,4)(5,8,7)(9,10)(11,12), \\
& (3,9)(4,10),(1,9,3,6,5,2)(4,12,11,8,7,10)\rangle=A_{12}
\end{aligned}
$$

and similarly (taking the projection to the second factor of $\operatorname{Aut}\left(\mathcal{T}_{12}\right) \times \operatorname{Aut}\left(\mathcal{T}_{10}\right)$, thus getting finite permutation groups $\left.P_{v}^{(k)}(\Gamma)<S_{10 \cdot 9^{k-1}}\right)$

$$
\begin{aligned}
P_{v}^{(1)}(\Gamma)= & \langle(1,2)(5,6)(8,10,9),(1,2,3)(5,6)(9,10),(1,2)(4,5,6,7)(8,10,9), \\
& (1,2,3)(4,5,6,7)(9,10),(2,5,6,3)(8,9),(1,7,9,6,5,8)(2,3,10,4)\rangle=A_{10}
\end{aligned}
$$

By the Normal Subgroup Theorem of Burger-Mozes ([3], see also [8]), using the simplicity and high transitivity of A_{12} and A_{10}, the group Γ has no non-trivial normal subgroups of infinite index. This theorem can also be applied to any finite index subgroup of Γ, in particular to $\Lambda<\Gamma$ which is a subgroup of index 4 by definition.

Next we have to study the finite index subgroups of Λ. We start with the subgroup $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}\right\rangle_{\Gamma}$ of Γ. It has a presentation

$$
\begin{aligned}
\left\langle a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}\right| & a_{1} b_{1} a_{2}^{-1} b_{2}^{-1}, a_{1} b_{2} a_{1}^{-1} b_{1}^{-1}, a_{1} b_{3} a_{2}^{-1} b_{3}^{-1}, a_{1} b_{3}^{-1} a_{2}^{-1} b_{2}, \\
& a_{1} b_{1}^{-1} a_{2}^{-1} b_{3}, a_{2} b_{2} a_{2}^{-1} b_{1}^{-1}, a_{3} b_{1} a_{4}^{-1} b_{2}^{-1}, a_{3} b_{2} a_{3}^{-1} b_{1}^{-1} \\
& \left.a_{3} b_{3} a_{4}^{-1} b_{3}^{-1}, a_{3} b_{3}^{-1} a_{4}^{-1} b_{2}, a_{3} b_{1}^{-1} a_{4}^{-1} b_{3}, a_{4} b_{2} a_{4}^{-1} b_{1}^{-1}\right\rangle
\end{aligned}
$$

since it is the fundamental group $\pi_{1}(W, x)$ of a finite square complex W which is embedded in X by construction. This implies that $\pi_{1}(W, x)<\Gamma=\pi_{1}(X, x)$. Observe that the 12 relators in the presentation of $\pi_{1}(W, x)$ also appear in the presentation of Γ, and that the link of the single vertex (again called x) in W is a complete bipartite graph on $8+6$ vertices corresponding to $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}^{ \pm 1}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}^{ \pm 1}$. This group $\pi_{1}(W, x)$ is not residually finite and was introduced exactly for this purpose by Wise in [12] where it is called $\pi_{1}(D)$. He showed for
example that the element $a_{2} a_{1}^{-1} a_{3} a_{4}^{-1}$ is contained in each finite index subgroup of $\pi_{1}(W, x)$. Consequently, this element is also contained in each finite index subgroup of Γ. Since $\left\langle\left\langle a_{2} a_{1}^{-1} a_{3} a_{4}^{-1}\right\rangle\right\rangle_{\Gamma}$ has index 4 in Γ, it follows (see [8]) that

$$
\Lambda=\left\langle\left\langle a_{2} a_{1}^{-1} a_{3} a_{4}^{-1}\right\rangle_{\Gamma}=\bigcap\{N \triangleleft \Gamma: N \text { has finite index in } \Gamma\}\right.
$$

but the latter group is easily seen to have no proper subgroups of finite index, hence Λ is simple.

We show now that Λ is incoherent. First observe that $a_{1} a_{2}^{-1}$ commutes with b_{1} in $\pi_{1}(W, x)$ (and therefore in Γ), since

$$
a_{1} a_{2}^{-1} b_{1}=a_{1} b_{2} a_{2}^{-1}=b_{1} a_{1} a_{2}^{-1}
$$

using the square relators $a_{2} b_{2} a_{2}^{-1} b_{1}^{-1}$ and $a_{1} b_{2} a_{1}^{-1} b_{1}^{-1}$ from the presentation of $\pi_{1}(W, x)$. Moreover, we have forced X to contain certain tori, namely $a_{1} b_{4} a_{1}^{-1} b_{4}^{-1}$, $a_{2} b_{4} a_{2}^{-1} b_{4}^{-1}, a_{5} b_{1} a_{5}^{-1} b_{1}^{-1}$ and $a_{5} b_{4} a_{5}^{-1} b_{4}^{-1}$. This implies that

$$
a_{5} b_{1}=b_{1} a_{5}, a_{5} b_{4}=b_{4} a_{5} \text { and } a_{1} a_{2}^{-1} b_{4}=b_{4} a_{1} a_{2}^{-1}
$$

holds in Γ. By Lemma 4 and Lemma 3,

$$
\left\langle a_{5}, a_{1} a_{2}^{-1}, b_{1}, b_{4}\right\rangle_{\Gamma} \cong\left\langle a_{5}, a_{1} a_{2}^{-1}\right\rangle_{\Gamma} \times\left\langle b_{1}, b_{4}\right\rangle_{\Gamma} \cong F_{2} \times F_{2},
$$

but this group is not contained in Λ (recall the definition of Λ as kernel of φ). Therefore, we take the subgroup

$$
\left\langle a_{5}^{2}, a_{1} a_{2}^{-1}, b_{1}^{2}, b_{4}^{2}\right\rangle_{\Gamma} \cong\left\langle a_{5}^{2}, a_{1} a_{2}^{-1}\right\rangle_{\Gamma} \times\left\langle b_{1}^{2}, b_{4}^{2}\right\rangle_{\Gamma} \cong F_{2} \times F_{2},
$$

which is obviously a subgroup of Λ. To see that $\left\langle a_{5}^{2} b_{1}^{2}, a_{1} a_{2}^{-1} b_{4}^{2}, a_{5}^{2}\right\rangle_{\Gamma}$ is not finitely presented, we apply Proposition 1 to the following setting: $k=2, s_{1}=a_{5}^{2}, s_{2}=$ $a_{1} a_{2}^{-1}, t_{1}=b_{1}^{2}, t_{2}=b_{4}^{2}$, and $m=1, r_{1}=s_{1}$, that is we take $F=\left\langle a_{5}^{2}, a_{1} a_{2}^{-1}\right\rangle_{\Gamma} \cong F_{2}$ and $\bar{F}=\left\langle b_{1}^{2}, b_{4}^{2}\right\rangle_{\Gamma} \cong F_{2}$. It remains to check that H is infinite and $R \neq\{1\}$, but this is clear since $H=\left\langle s_{1}, s_{2} \mid s_{1}\right\rangle \cong\left\langle a_{1} a_{2}^{-1}\right\rangle_{\Gamma} \cong \mathbb{Z}$, and $R=\left\langle\left\langle a_{5}^{2}\right\rangle\right\rangle_{F}$.

Remark 6. Note that the group Λ can be decomposed as amalgamated products $F_{9} *_{F_{97}} F_{9}$ and $F_{11} *_{F_{101}} F_{11}$ (see [7, Proposition 1.4]), in particular Λ is torsion-free.

Remark 7. It is well-known that the word problem is solvable for any finitely presented simple group. In fact, by a theorem of Boone-Higman ([1]), a finitely generated group has solvable word problem if and only if it can be embedded in a simple subgroup of a finitely presented group. However, the generalized word problem is not solvable for the simple group Λ, since it contains $F_{2} \times F_{2}$ (using a result of Mihallova [6]). Recall that the generalized word problem is solvable for a group G if it is decidable for any element $g \in G$ and any finitely generated subgroup $H<G$ whether or not g lies in H. It is also known that Λ has solvable conjugacy problem (being bi-automatic).

Remark 8. We mention two other ways to construct finitely presented incoherent simple groups: One is to directly embed $F_{2} \times F_{2}$ into a virtually simple group by [3, Theorem 6.5]. The second one is a finitely presented simple group containing $\mathrm{GL}_{4}(\mathbb{Z})$ constructed by E. Scott $([9])$. It is known $([5])$ that $\mathrm{SL}_{4}(\mathbb{Z})<\mathrm{GL}_{4}(\mathbb{Z})$ is incoherent. In fact, if $A, B \in \mathrm{SL}_{2}(\mathbb{Z})$ generate a free group of rank 2 , and E denotes the identity matrix in $\mathrm{SL}_{2}(\mathbb{Z})$, then

$$
\left\langle\left(\begin{array}{cc}
A & 0 \\
0 & E
\end{array}\right),\left(\begin{array}{cc}
B & 0 \\
0 & E
\end{array}\right),\left(\begin{array}{cc}
E & 0 \\
0 & A
\end{array}\right),\left(\begin{array}{cc}
E & 0 \\
0 & B
\end{array}\right)\right\rangle_{\mathrm{SL}_{4}(\mathbb{Z})} \cong F_{2} \times F_{2} .
$$

Explicitly, one can take

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

References

[1] W. W. Boone and G. Higman, 'An algebraic characterization of groups with soluble word problem', Collection of articles dedicated to the memory of Hanna Neumann, IX. J. Austral. Math. Soc. 18(1974), 41-53.
[2] M. R. Bridson and D. T. Wise, ' $V H$ complexes, towers and subgroups of $F \times F$ ', Math. Proc. Cambridge Philos. Soc. 126(1999), no. 3, 481-497.
[3] M. Burger and S. Mozes, 'Lattices in product of trees', Inst. Hautes Études Sci. Publ. Math. No. 92 (2001), 151-194.
[4] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2004. (http://www.gap-system.org)
[5] F. J. Grunewald, 'On some groups which cannot be finitely presented', J. London Math. Soc. (2) $\mathbf{1 7}$ (1978), no. 3, 427-436.
[6] K. A. Mihal̆lova, 'The occurrence problem for direct products of groups', (Russian) Dokl. Akad. Nauk SSSR 119(1958), 1103-1105.
[7] D. Rattaggi, 'Computations in groups acting on a product of trees: normal subgroup structures and quaternion lattices', Ph.D. thesis, ETH Zürich, 2004.
[8] D. Rattaggi, 'A finitely presented torsion-free simple group', Preprint, 2004, available at arXiv:math.GR/0411546.
[9] E. A. Scott, 'The embedding of certain linear and abelian groups in finitely presented simple groups', J. Algebra 90(1984), no. 2, 323-332.
[10] G. P. Scott, 'Finitely generated 3-manifold groups are finitely presented', J. London Math. Soc. (2) 6(1973), 437-440.
[11] J. Stallings, 'Coherence of 3-manifold fundamental groups', Séminaire Bourbaki, Vol. 1975/76, 28 ème année, Exp. No. 481, pp. 167-173. Lecture Notes in Math., Vol. 567, Springer, Berlin, 1977.
[12] D. T. Wise, 'Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups', Ph.D. thesis, Princeton University, 1996.

Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64, CH-1211 Genève 4, Switzerland

E-mail address: rattaggi@math.unige.ch

[^0]: Date: July 18, 2005.
 2000 Mathematics Subject Classification. Primary: 20E07, 20E32. Secondary: 20F05, 20F65, 20F67, 57M20.

 Supported by the Swiss National Science Foundation, No. PP002-68627.

