
ON INFINITE GROUPS GENERATED BY TWO QUATERNIONS
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Abstract. Let x, y be two integral quaternions of norm p and l, respectively,
where p, l are distinct odd prime numbers. We investigate the structure of
〈x, y〉, the multiplicative group generated by x and y. Under a certain con-
dition which excludes 〈x, y〉 from being free or abelian, we show for example
that 〈x, y〉, its center, commutator subgroup and abelianization are finitely pre-
sented infinite groups. We give many examples where our condition is satisfied
and compute as an illustration a finite presentation of the group 〈1+j+k, 1+2j〉
having these two generators and seven relations. In a second part, we study
the basic question whether there exist commuting quaternions x and y for
fixed p, l, using results on prime numbers of the form r2 + ms2 and a simple
invariant for commutativity.

0. Introduction

Let p, l be two distinct odd prime numbers and x, y two integral Hamilton
quaternions whose norms are in the set {prls : r, s ∈ N0} \ {1}. We are interested
in the structure of the multiplicative group generated by x and y. These groups
〈x, y〉 are always infinite since x and y have infinite order by the assumption made
on the norms.

We first consider the case where x and y do not commute. It is well-known that
certain pairs x, y generate a free group of rank two, e.g. 〈1 + 2i, 1 + 2k〉 ∼= F2.
However, if the norms of x and y are not powers of the same prime number p,
then the structure of 〈x, y〉 is unknown in general. Nevertheless, we have shown in
[11, Proposition 27] that the group 〈1 + 2i, 1 + 4k〉 is not free by establishing an
explicit relation of length 106. This holds in a more general situation. We will de-
scribe in Section 1 a homomorphism ψp,l defined on the group of invertible rational
quaternions, and give the definition of a group Γp,l such that 〈ψp,l(x), ψp,l(y)〉 is a
subgroup of Γp,l. It follows from results in [11] that if x, y satisfy some technical
condition on the parity of their coefficients and if the group 〈ψp,l(x), ψp,l(y)〉 has
finite index in Γp,l, then 〈x, y〉 is not free. Here we will use similar techniques to get
more precise information on some groups 〈x, y〉 and naturally related subgroups or
quotients. For instance, under the assumptions mentioned above which imply that
〈x, y〉 is not free, we will prove in Theorem 12 that 〈x, y〉 as well as its center, its
commutator subgroup and its abelianization are finitely presented infinite groups.
This contrasts to the case where 〈x, y〉 ∼= F2, since then the center is finite (in fact
trivial) and the commutator subgroup is not finitely presented (in fact not finitely
generated). It also contrast to the case where x and y commute, since then the
commutator subgroup of 〈x, y〉 is trivial. However, we will show in Theorem 12
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that our groups 〈x, y〉 contain non-abelian free subgroups F2 of infinite index and
free abelian subgroups Z × Z of infinite index.

Our constructions will be illustrated in Section 3 for the concrete example x =
1 + j + k of norm p = 3 and y = 1 + 2j of norm l = 5. In particular, we will
compute a finite presentation of 〈1 + j + k, 1 + 2j〉 having seven relations, and
determine its center, which turns out to be 〈34, 54〉 = 〈81, 625〉 < Q∗, a group
isomorphic to Z × Z. We guess that the finiteness assumption made on the index
of 〈ψp,l(x), ψp,l(y)〉 in Γp,l is a rather restrictive condition in general. Nevertheless
we are able to give many explicit examples where it holds (at least for small p and
l). Table 2 in Section 5 describes 191 selected examples of such pairs x, y of norm
p and l, respectively, for 56 distinct pairs (p, l) satisfying 3 ≤ p < l < 100.

If x and y commute, then the structure of 〈x, y〉 is less challenging. We get an
abelian group like

〈1 + 2i, 1 + 4i〉 ∼= Z × Z

or

〈1 + 2i,−1− 2i〉 = 〈1 + 2i,−1〉 ∼= Z × Z2,

where we always use the notation Zn := Z/nZ for the cyclic group of order n.
However, we are interested to know for which pairs p, l there exist commuting
integral quaternions x, y of norm p and l at all. We will study this problem in
Section 4 and give some partial general answers using congruence conditions for p
and l.

1. Preliminaries

Throughout the whole article, let p, l be any pair of distinct odd prime numbers.
The goal of this section is to define and describe the family of groups Γp,l mentioned
in the introduction. These groups are closely related to certain finitely generated
multiplicative subgroups of invertible rational Hamilton quaternions.

For a commutative ring R with unit, let

H(R) = {x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R}

be the ring of Hamilton quaternions over R, i.e. 1, i, j, k is a free basis, and the
multiplication is determined by the identities i2 = j2 = k2 = −1 and ij = −ji = k.
Let x := x0 −x1i−x2j−x3k be the conjugate of x = x0 +x1i+x2j+x3k ∈ H(R),
and

|x|2 := xx = xx = x2
0 + x2

1 + x2
2 + x2

3 ∈ R

its norm. Note that |xy|2 = |x|2|y|2 for all x, y ∈ H(R). We denote by ℜ(x) := x0

the “real part” of x. Let R∗ be the multiplicative group of invertible elements in the
ring R. We will mainly use the two groups H(Q)∗ = H(Q) \ {0} and Q∗ = Q \ {0}.
Let

H(R)1 := {x ∈ H(R)∗ : |x|2 = 1}

be the subgroup of quaternions of norm 1.
If K is a field, let as usual PGL2(K) = GL2(K)/ZGL2(K) be the quotient of

the group of invertible (2 × 2)-matrices over K by its center. We write brackets
[A] ∈ PGL2(K) to denote the image of the matrix A ∈ GL2(K) under the quotient
homomorphism GL2(K) → PGL2(K). Let Qp, Ql be the field of p-adic and l-adic
numbers, respectively, and fix elements cp, dp ∈ Qp and cl, dl ∈ Ql such that

c2p + d2
p + 1 = 0 ∈ Qp and c2l + d2

l + 1 = 0 ∈ Ql.
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For q ∈ {p, l} let ψq be the homomorphism of groups H(Q)∗ → PGL2(Qq) defined
by

ψq(x) :=

[(

x0 + x1cq + x3dq −x1dq + x2 + x3cq
−x1dq − x2 + x3cq x0 − x1cq − x3dq

)]

,

where x = x0 + x1i+ x2j + x3k ∈ H(Q)∗. The following homomorphism ψp,l will
play a crucial role in our analysis of quaternion groups. Let

ψp,l : H(Q)∗ → PGL2(Qp) × PGL2(Ql)

be given by
ψp,l(x) := (ψp(x), ψl(x)).

This homomorphism is not injective, in fact (see [10, Chapter 3])

ker(ψp,l) = Z(H(Q)∗) = {x ∈ H(Q)∗ : x = x} ∼= Q∗,

where for the last isomorphism we identify Q∗ with the image of the natural injective
homomorphism Q∗ → H(Q)∗ given by x0 7→ x0 + 0 · i+ 0 · j + 0 · k. In particular,
we have ψp,l(x) = ψp,l(y), if and only if y = λx for some λ ∈ Q∗, and therefore

ψp,l(x) = ψp,l(−x)

for each x ∈ H(Q)∗. Moreover, using the rule x = |x|2x−1, we also get

ψp,l(x) = ψp,l(x)
−1.

For an odd prime number q, let Xq be the finite set of integral quaternions

Xq := {x = x0+x1i+ x2j + x3k ∈ H(Z) ; |x|2 = q ;

x0 odd, x1, x2, x3 even, if q ≡ 1 (mod 4) ;

x1 even, x0, x2, x3 odd, if q ≡ 3 (mod 4)} .

Observe that Xq has exactly 2(q+1) elements (by Jacobi’s theorem on the number
of representations of an integer as a sum of four squares) and that Xq is closed
under conjugation and under multiplication by −1. As examples we have

X3 = {±1 ± j ± k},

where all of the 23 possible combinations of signs are allowed, and

X5 = {±1 ± 2i, ±1 ± 2j, ±1 ± 2k}.

Finally, let Qp,l be the subgroup of H(Q)∗ generated by (Xp ∪Xl) ⊂ H(Z) and
let Γp,l < PGL2(Qp) × PGL2(Ql) be its image ψp,l(Qp,l). Using the properties
ψp,l(x) = ψp,l(−x) and ψp,l(x) = ψp,l(x)

−1 mentioned above, it follows that Γp,l
is generated by (p + 1)/2 + (l + 1)/2 elements. For example Γ3,5 is generated by
the five elements ψ3,5(1 + j + k), ψ3,5(1 + j − k), ψ3,5(1 + 2i), ψ3,5(1 + 2j) and
ψ3,5(1 + 2k). See Section 3 for a finite presentation of Γ3,5.

We recall some known properties of the group Γp,l from [1], [8], [10], [11], [13].
It has a finite presentation with generators

a1, . . . , a p+1

2

, b1, . . . , b l+1

2

and (p+ 1)(l + 1)/4 defining relations of the form abãb̃ = 1 for some

a, ã ∈ {a1, . . . , a p+1

2

}±1 and b, b̃ ∈ {b1, . . . , b l+1

2

}±1.

It acts freely and transitively on the vertices of the product of two regular trees of
degree p+1 and l+1, respectively, is CAT(0), bi-automatic and can be decomposed
as an amalgamated product of finitely generated free groups (see [1] or [10]). It is
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CSA, i.e. all maximal abelian subgroups are malnormal (see [13, Proposition 2.6]),
in particular it is commutative transitive, i.e. the relation of commutativity is tran-
sitive on non-trivial elements. It is also linear (see [11, Proposition 31] for an
explicit injective homomorphism Γp,l → SO3(Q) < GL3(Q)), contains free abelian
subgroups Z×Z (see [10, Proposition 4.2(3)]) as well as non-abelian free subgroups,
for example

〈a1, . . . , a p+1

2

〉 ∼= F p+1

2

or 〈b1, . . . , b l+1

2

〉 ∼= F l+1

2

.

(However, it is not known whether there are elements

a ∈ 〈a1, . . . , a p+1

2

〉 and b ∈ 〈b1, . . . , b l+1

2

〉

generating a free group 〈a, b〉 ∼= F2.) The conditions on the parity of x0, x1, x2, x3

in the definition of Xp and Xl are mainly used to guarantee that Γp,l is torsion-
free (see [8, Proposition 3.6] and [10, Theorem 3.30(4)]). Since finitely generated,
torsion-free, virtually free groups are free (see [14]), the group Γp,l is not virtually
free. Moreover, Γp,l is not virtually abelian. (It is well-known that the property
of being virtually abelian is invariant under quasi-isometry for finitely generated
groups. Now we use that Γp,l is quasi-isometric to the non-virtually abelian group
F2 × F2, see [10, Proposition 4.25(4)]. Alternatively, without using finite index
subgroups of F2 × F2, we note that Γp,l is also quasi-isometric to the non-abelian
finitely presented torsion-free simple groups described in [1] and [10]. Infinite non-
abelian simple groups are obviously not virtually abelian, which gives another proof
that Γp,l is not virtually abelian.) Any non-trivial normal subgroup of Γp,l has finite
index (by the “Normal Subgroup Theorem” of Burger-Mozes [1, Chapter 4 and 5]).
This property also holds for any finite index subgroup of Γp,l.

2. The non-commutative case

We begin with some basic notations and a general lemma which will be applied
to our quaternion groups later. If G is any group and g1, g2 ∈ G two elements, we
denote by [g1, g2] := g1g2g

−1
1 g−1

2 the commutator of g1 and g2, by G′ the commu-
tator subgroup of G, by Gab the quotient G/G′, and by ZG or Z(G) the center of
G.

Lemma 1. Let G be a (multiplicatively written) group and N a normal subgroup
of G. Then we have the following commutative diagram with exact rows and exact
columns

1 1 1

1 // (G/N)′
i1

//

OO

G/N
p1

//

OO

(G/N)ab //

OO

1

1 // G′
i2

//

q1

OO

G
p2

//

q2

OO

Gab //

q3

OO

1

1 // N ∩G′
i3

//

j1

OO

N
p3

//

j2

OO

p2(N) //

j3

OO

1

1

OO

1

OO

1

OO
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where i1, i2, i3, j1, j2, j3 are the natural homomorphisms injecting the correspond-
ing normal subgroups, p1, p2, q2 are the natural projections, p3 is the restriction of
p2 to N , q1 is induced by

q1([g1, g2]) := [g1N, g2N ] = [g1, g2]N,

i.e. q1(g
′) = g′N , if g′ ∈ G′, and finally q3(gG

′) := gN(G/N)′.

Proof. It is clear that the top row, the middle row and the middle column are exact.
The exactness of the bottom row and left column also follows immediately, since

ker(p3) = {n ∈ N : nG′ = G′} = i3(N ∩G′)

and
ker(q1) = {g′ ∈ G′ : g′N = N} = j1(N ∩G′).

It remains to see that the right column is exact. The only non-obvious part is to
show that ker(q3) = im(j3). We have by definition of q3

ker(q3) = {gG′ ∈ G/G′ : gN ∈ (G/N)′}.

Since

gN ∈ (G/N)′ ⇔ gN ∈ {g′N ∈ G/N : g′ ∈ G′} ⇔ ∃ g′ ∈ G′ : gN = g′N

⇔ ∃ g′ ∈ G′ : g′−1g ∈ N ⇔ ∃ g′ ∈ G′, n ∈ N : g′−1g = n

⇔ ∃ g′ ∈ G′, n ∈ N : g′−1 = ng−1 ⇔ ∃n ∈ N : ng−1 ∈ G′

⇔ ∃n ∈ N : g−1G′ = n−1G′ ⇔ ∃n ∈ N : gG′ = nG′

⇔ gG′ ∈ {nG′ : n ∈ N}

it follows that
ker(q3) = {nG′ ∈ G/G′ : n ∈ N} = im(j3).

The commutativity of the diagram is a direct consequence of the given definitions.
�

We refer to Section 1 for the notations concerning our quaternion groups. Let
x, y ∈ Qp,l be two non-commuting quaternions and ψ the restriction of ψp,l to the
subgroup 〈x, y〉 < Qp,l < H(Q)∗. We want to apply Lemma 1 to the situation
where q2 : G→ G/N is the surjective homomorphism ψ : 〈x, y〉 → 〈ψ(x), ψ(y)〉 and
where N = ker(ψ), in order to get some information on the structure of the four
groups 〈x, y〉, Z〈x, y〉, 〈x, y〉′ and 〈x, y〉ab. First, we investigate the group ker(ψ) in
Lemma 3(1),(2),(3), applying the following lemma. Then, we try to understand in
Lemma 3(4) the bottom left term N ∩G′ of the diagram.

Lemma 2. (1) The group H(Q)∗ is commutative transitive on non-central el-
ements, in other words xz = zx, yz = zy implies xy = yx, whenever
x, y, z ∈ H(Q)∗ \ Q∗.

(2) The group H(Q)∗ contains no subgroup isomorphic to a direct product of
two non-abelian groups.

Proof. (1) This is an elementary computation, see [10, Lemma 3.4(3)].
(2) Suppose that H(Q)∗ contains a subgroup G × H , where G,H are non-

abelian groups. Take g1, g2 ∈ G such that g1g2 6= g2g1 and h1, h2 ∈ H such
that h1h2 6= h2h1. Then clearly g1, g2, h1 /∈ Z(H(Q)∗). The fact that h1

commutes with g1 and with g2 but g1g2 6= g2g1 now contradicts part (1) of
this lemma.
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�

Lemma 3. Let x, y ∈ Qp,l be two non-commuting quaternions and ψ the restriction
of ψp,l to 〈x, y〉. Then

(1) Z〈x, y〉 = 〈x, y〉 ∩ Q∗.
(2) ker(ψ) = Z〈x, y〉.
(3) Z〈x, y〉 < {±prls : r, s ∈ Z} = 〈−1, p, l〉 ∼= Z2 ×Z×Z, in particular Z〈x, y〉

is finitely presented.
(4) Z〈x, y〉 ∩ 〈x, y〉′ < {±1} ∼= Z2.
(5) The following diagram is commutative and has exact rows and columns

1 1 1

1 // 〈ψ(x), ψ(y)〉′ //

OO

〈ψ(x), ψ(y)〉 //

OO

〈ψ(x), ψ(y)〉ab //

OO

1

1 // 〈x, y〉′ //

OO

〈x, y〉
p2

//

ψ

OO

〈x, y〉ab //

OO

1

1 // 1 or {±1} //

OO

Z〈x, y〉 //

OO

p2(Z〈x, y〉) //

OO

1

1

OO

1

OO

1

OO

where the maps are defined as in Lemma 1, starting with

(N −→ G
q2
−→ G/N) := (ker(ψ) −→ 〈x, y〉

ψ
−→ 〈ψ(x), ψ(y)〉).

(6) [x, y] 6= −1.
(7) Define the following three statements:

(i) Z〈x, y〉 is infinite.
(ii) |x|2 6= 1 or |y|2 6= 1.
(iii) 〈x, y〉ab is infinite.
Then (i) implies (ii) which in turn implies (iii).

(8) Let r(ψ(x), ψ(y)) be a relator in the group generated by ψ(x), ψ(y). Then
r(x, y) ∈ Z〈x, y〉.

(9) 〈x, y〉 ∼= F2 if and only if 〈ψ(x), ψ(y)〉 ∼= F2.

Proof. (1) First recall that Z(H(Q)∗) = Q∗. Since x, y do not commute by
assumption, we have in particular x, y /∈ Q∗. If z ∈ Z〈x, y〉, then z ∈ Q∗

(otherwise x, y, z would be three non-central elements in H(Q)∗ such that
z commutes with x and y, but x and y do not commute, contradicting
Lemma 2(1)). This shows that Z〈x, y〉 < 〈x, y〉 ∩ Q∗.

To show Z〈x, y〉 > 〈x, y〉 ∩ Q∗ we again use that Q∗ = Z(H(Q)∗).
(2) Using ker(ψp,l) = Q∗ and part (1) of this lemma, we get

ker(ψ) = ker(ψp,l) ∩ 〈x, y〉 = Q∗ ∩ 〈x, y〉 = Z〈x, y〉.
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(3) The norm of any element in 〈x, y〉 is of the form prls for some r, s ∈ Z,
hence

Z〈x, y〉 = 〈x, y〉 ∩ Q∗ = 〈x, y〉 ∩ {±prls : r, s ∈ Z} < {±prls : r, s ∈ Z}.

The center Z〈x, y〉 is finitely presented, since subgroups of finitely gener-
ated abelian groups are again finitely generated abelian, and since finitely
generated abelian groups are finitely presented.

(4) As seen in part (1) of this lemma, we have Z〈x, y〉 < Q∗. By the multi-
plicativity of the norm, any commutator in H(Q)∗ has norm 1, hence any
element in 〈x, y〉′ has norm 1. The only elements in Q∗ having norm 1 are
±1, and the statement follows.

(5) We combine Lemma 1 with part (2) and (4) of this lemma.
(6) [x, y] = −1 is equivalent to xy = −yx which implies ℜ(x) = 0 (see [10,

Lemma 3.4(2)]). But then

x2 = −x2
1 − x2

2 − x2
3 ∈ Q∗,

hence
1Γp,l

= ψ(x2) = ψ(x)2.

Since Γp,l is torsion-free, ψ(x) = 1Γp,l
, and x ∈ ker(ψ) = Q∗ ∩ 〈x, y〉 by

part (1) and (2) of this lemma, contradicting ℜ(x) = 0.
(7) If |x|2 = |y|2 = 1, then all elements of 〈x, y〉 have norm 1, in particular all

elements of Z〈x, y〉 have norm 1. As in the proof of part (4) of this lemma
we see that Z〈x, y〉 < {±1} is finite.

To show that (ii) implies (iii), we assume without loss of generality that
|x|2 6= 1. Then the norms of xm and xn are distinct, whenever m 6= n ∈ Z.
Any element in 〈x, y〉′ has norm 1, as observed in the proof of part (4)
of this lemma. It follows that any two cosets xm〈x, y〉′ and xn〈x, y〉′ are
distinct. In particular, 〈x, y〉′ has infinite index in 〈x, y〉, hence 〈x, y〉ab is
infinite.

(8) We have r(x, y) ∈ ker(ψ) and apply part (2) of this lemma.
(9) See [11, Proposition 32].

�

Remark 4. Going through the proofs of Lemma 3 we see that some results can be
easily generalized: Let G be any non-abelian subgroup of H(Q)∗. Then

• ker(ψp,l|G) = ZG = G ∩ Q∗.
• ZG ∩G′ < {±1}.
• ZG is infinite ⇒ G ≮ H(Q)1 ⇒ Gab is infinite.

Related to Lemma 3(4), note that clearly Z〈x, y〉 ∩ 〈x, y〉′ = 1 if x, y ∈ Qp,l
commute. We conjecture that −1 ∈ Z〈x, y〉 ∩ 〈x, y〉′ is also impossible if x, y ∈ Qp,l
do not commute (see Conjecture 7).

Question 5. Let x, y ∈ Qp,l be two non-commuting quaternions. Is it possible that
−1 ∈ Z〈x, y〉? (Equivalently, is it possible that −1 ∈ 〈x, y〉?)

Conjecture 6. Let x, y ∈ Qp,l. Then −1 /∈ 〈x, y〉′. We even conjecture that
−1 /∈ Q′

p,l (cf. Remark 15).

As a consequence of Lemma 3(4) and Conjecture 6 we have

Conjecture 7. Let x, y ∈ Qp,l. Then Z〈x, y〉 ∩ 〈x, y〉′ = 1.
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In contrast to Lemma 3(6), commutators in H(Q)∗ can of course be −1, for
example [i, j] = −1. More generally, if x, y ∈ H(Q)∗, then [x, y] = −1 if and only if
x0 = y0 = 0 and x1y1 + x2y2 + x3y3 = 0, see [12, Lemma 1]. In particular we have
−1 ∈ (H(Q)∗)′ and Z(H(Q)∗)∩ (H(Q)∗)′ = {±1}. However, it is easy to proof that
−1 /∈ 〈Xq〉

′ for all odd prime numbers q.

Problem 8. Characterize the (non-abelian) subgroups G of H(Q)∗ such that −1 ∈
G′.

Before applying Lemma 3 to deduce our main results of this section in Theo-
rem 12, we prove another general lemma and some statements about groups gen-
erated by quaternions x, y ∈ Qp,l satisfying a (relatively weak) norm condition in
Proposition 10.

Lemma 9. The only non-trivial element of finite order in Qp,l is −1. In particular,
a subgroup G < Qp,l is torsion-free if and only if −1 /∈ G.

Proof. Let z ∈ Qp,l such that zn = 1 for some n ∈ N. Then ψ(z)n = 1Γp,l
. Since

Γp,l is torsion-free, we have ψ(z) = 1Γp,l
, hence z ∈ Q∗. But then z ∈ {±1}, since

1 = |1|2 = |zn|2 = (|z|2)n = z2n.

�

Proposition 10. Let x, y ∈ Qp,l be two quaternions of norms |x|2 = pr1 ls1 , |y|2 =
pr2 ls2 , r1, r2, l1, l2 ∈ Z, such that r1s2 6= r2s1. (This condition holds for example if
|x|2 = pr, |y|2 = ls for some r, s ∈ Z \ {0}). Then

(1) 〈x, y〉ab ∼= Z × Z, generated by the two commuting elements x〈x, y〉′ and
y〈x, y〉′.

(2) 〈x, y〉 ∩ H(Q)1 = 〈x, y〉′.
(3) 〈x, y〉 is torsion-free if and only if 〈x, y〉′ is torsion-free.

Proof. (1) Let r(x, y) = 1 be any relation in 〈x, y〉. Let sx be the exponent
sum of x in r(x, y) and sy the exponent sum of y in r(x, y). Taking the
norm of r(x, y) = 1, we get

psxr1+syr2 · lsxs1+sys2 = 1,

hence
(

r1 r2
s1 s2

) (

sx
sy

)

=

(

0
0

)

.

By assumption, the determinant r1s2 − r2s1 is non-zero and we get sx =
sy = 0. This shows that the relator r(x, y) is a consequence of the relator
[x, y]. Thus 〈x, y〉ab ∼= 〈x, y | [x, y]〉, where the two generators correspond
to x〈x, y〉′ and y〈x, y〉′. (Note that for any group G, a presentation of Gab is
obtained from a presentation 〈X | R〉 of G by adding to R all commutators
of elements of X . In the case of a 2-generator group, we therefore have to
add just a single commutator.)

(2) Clearly 〈x, y〉 ∩ H(Q)1 > 〈x, y〉′.
To show the other inclusion, let z ∈ 〈x, y〉 ∩ H(Q)1. Since z has norm 1,

it follows as in part (1) of this proposition that the exponent sums of x and
y in z are 0. Thus z〈x, y〉′ = 〈x, y〉′ in the abelian group 〈x, y〉/〈x, y〉′, in
other words z ∈ 〈x, y〉′.
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(3) Suppose that 〈x, y〉 is not torsion-free. Then −1 ∈ 〈x, y〉 by Lemma 9, hence
−1 ∈ 〈x, y〉′ by part (2) of this proposition and 〈x, y〉′ is not torsion-free.

The other direction is obvious.
�

Lemma 11. Let x, y ∈ Qp,l be two quaternions and assume that 〈ψ(x), ψ(y)〉 has
finite index in Γp,l. Then

(1) x and y do not commute.
(2) 〈ψ(x), ψ(y)〉ab is finite.

Proof. (1) If x and y commute, then 〈ψ(x), ψ(y)〉 is an abelian group, but Γp,l
is not virtually abelian.

(2) If G is a subgroup of finite index in Γp,l, then any non-trivial normal
subgroup of G has finite index in G. Since 〈ψ(x), ψ(y)〉 is not abelian,
the normal subgroup 〈ψ(x), ψ(y)〉′ is not trivial, hence has finite index in
〈ψ(x), ψ(y)〉.

�

Theorem 12. Let x, y ∈ Qp,l be two quaternions and let ψ be the restriction of
ψp,l to 〈x, y〉. Assume that the group ψ(〈x, y〉) = 〈ψ(x), ψ(y)〉 has finite index in
Γp,l. Then

(1) The group 〈x, y〉 is finitely presented and infinite.
(2) The group 〈x, y〉′ is finitely presented and infinite.
(3) The following three statements are equivalent:

(i) Z〈x, y〉 is infinite.
(ii) |x|2 6= 1 or |y|2 6= 1.
(iii) 〈x, y〉ab is infinite.

(4) The group 〈x, y〉 is not virtually solvable.
(5) The group 〈x, y〉 contains a free subgroup F2 of infinite index.
(6) The group 〈x, y〉 contains a subgroup Z×Z of infinite index. In particular,

〈x, y〉 is not hyperbolic.
(7) Let N be a normal subgroup of 〈x, y〉 of infinite index such that Z〈x, y〉 < N .

Then N = Z〈x, y〉.

Proof. By Lemma 11(1) we can use the commutative diagram of Lemma 3(5) which
we will simply call “the diagram” in this proof.

(1) The group 〈ψ(x), ψ(y)〉 is finitely presented, since it has finite index in
the finitely presented group Γp,l by assumption. Using the middle column
of the diagram, the group 〈x, y〉 is an extension of the finitely presented
group Z〈x, y〉 by the finitely presented group 〈ψ(x), ψ(y)〉, hence finitely
presented.

It is clear that 〈x, y〉 is infinite, since 〈ψ(x), ψ(y)〉 is infinite as a finite
index subgroup of the infinite group Γp,l.

(2) By Lemma 11(2) 〈ψ(x), ψ(y)〉ab is finite. By the exactness of the top row
in the diagram, 〈ψ(x), ψ(y)〉′ has finite index in 〈ψ(x), ψ(y)〉, hence is also
finitely presented. Now, using the exactness of the left column in the di-
agram, 〈x, y〉′ is an extension of a finite group (Z2 or 1) by the finitely
presented group 〈ψ(x), ψ(y)〉′ and therefore finitely presented.

By the exactness of the top row and left column, 〈ψ(x), ψ(y)〉′ and 〈x, y〉′

are infinite groups.
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(3) Because of Lemma 11(1) and Lemma 3(7), it remains to prove that (iii)
implies (i). Therefore suppose that 〈x, y〉ab is infinite. Since 〈ψ(x), ψ(y)〉ab

is finite by Lemma 11(2), the exactness of the right column in the diagram
shows that p2(Z〈x, y〉) is infinite. The exactness of the bottom row in the
diagram now shows that Z〈x, y〉 is infinite.

(4) We first show that the group 〈ψ(x), ψ(y)〉 is not virtually solvable. Note
that the property of being virtually solvable is not invariant under quasi-
isometry for finitely generated groups (see [5]), why we cannot use the same
strategy as for the proof that Γp,l is not virtually abelian. Instead of that,
we adapt an idea already used in the proof of [13, Corollary 2.8]. Let V <
〈ψ(x), ψ(y)〉 be a subgroup of finite index. Then V is not abelian (otherwise
Γp,l would be virtually abelian). The group 〈ψ(x), ψ(y)〉 is a non-abelian
CSA-group, since Γp,l is CSA, and subgroups of CSA-groups are CSA ([9,
Proposition 10(3)]). Now, we use the fact that non-abelian CSA-groups
do not have any non-abelian solvable subgroups ([9, Proposition 9(5)]) to
conclude that V is not solvable.

Let U be any finite index subgroup of 〈x, y〉. Since quotients of solvable
groups are solvable, and

[〈ψ(x), ψ(y)〉 : ψ(U)] ≤ [〈x, y〉 : U ] <∞,

the group U is not solvable, and therefore 〈x, y〉 is not virtually solvable.
(5) There is a well-known injective homomorphism of groups

H(Q)∗ → GL4(Q)

x0 + x1i+ x2j + x3k 7→









x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0









,

in particular 〈x, y〉 is a finitely generated linear group in characteristic 0.
Since 〈x, y〉 is not virtually solvable by part (4) of this theorem, it contains
by the Tits Alternative ([15]) a free subgroup F2.

A free subgroup F2 of 〈x, y〉 always has infinite index, since otherwise
ψ(F2) has finite index in Γp,l, but ψ(F2) ∼= F2 by Lemma 3(9) and Γp,l is
not virtually free.

(6) Let a1, . . . , a p+1

2

, b1, . . . , b l+1

2

be the standard generators of Γp,l. By [10,

Proposition 4.2(3)], there are elements

a ∈ 〈a1, . . . , a p+1

2

〉 and b ∈ 〈b1, . . . , b l+1

2

〉,

such that a, b generate a subgroup of Γp,l isomorphic to Z × Z. Since
〈ψ(x), ψ(y)〉 has finite index in Γp,l by assumption, there are m,n ∈ N such
that am, bn ∈ 〈ψ(x), ψ(y)〉 and

Z × Z ∼= 〈am, bn〉 < 〈ψ(x), ψ(y)〉.

Let w1, w2 be quaternions in 〈x, y〉 such that am = ψ(w1) and bn = ψ(w2).
Since am commutes with bn, we have

ψ(w1w2) = ψ(w2w1),

hence either

w1w2 = −w2w1
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or

w1w2 = w2w1.

The first case can be excluded similarly as in Lemma 3(6). The commuting
quaternions w1, w2 have infinite order, since w1, w2 /∈ {−1, 1}. Moreover,
it is not possible that wr1 = ws2 for some r, s ∈ N, since otherwise ψ(w1)

r =
ψ(w2)

s, i.e. amr = bns. But since mr 6= 0 6= ns, this is impossible using the
“normal form” (see [10, Proposition 1.10]) for elements of Γp,l. Therefore

Z × Z ∼= 〈w1, w2〉 < 〈x, y〉.

This subgroup has to be of infinite index, since Γp,l is not virtually abelian.
(7) The assumptions imply thatN/Z〈x, y〉 is a normal subgroup of 〈x, y〉/Z〈x, y〉

of infinite index, since

(〈x, y〉/Z〈x, y〉)/(N/Z〈x, y〉) ∼= 〈x, y〉/N.

The group

〈x, y〉/Z〈x, y〉 ∼= 〈ψ(x), ψ(y)〉

has no non-trivial normal subgroups of infinite index by Lemma 11(2),
hence N/Z〈x, y〉 = 1.

�

3. The example 〈1 + j + k, 1 + 2j〉

We study in this section the group 〈1 + j + k, 1 + 2j〉. Let p = |1 + j + k|2 = 3
and l = |1 + 2j|2 = 5. Then the group Γ := Γ3,5 has the finite presentation

Γ = 〈a1, a2, b1, b2, b3 |a1b1a2b2, a1b2a2b
−1
1 , a1b3a

−1
2 b1,

a1b
−1
3 a1b

−1
2 , a1b

−1
1 a−1

2 b3, a2b3a2b
−1
2 〉,

where we take

a1 := ψ3,5(1 + j + k), a−1
1 = ψ3,5(1 − j − k),

a2 := ψ3,5(1 + j − k), a−1
2 = ψ3,5(1 − j + k),

b1 := ψ3,5(1 + 2i), b−1
1 = ψ3,5(1 − 2i),

b2 := ψ3,5(1 + 2j), b−1
2 = ψ3,5(1 − 2j),

b3 := ψ3,5(1 + 2k), b−1
3 = ψ3,5(1 − 2k).

In the following, let x := 1+ j+ k, y := 1+2j, a := a1 = ψ3,5(x), b := b2 = ψ3,5(y)
and define the five words

r1(a, b) := ba2bab−1a4b−1a,

r2(a, b) := a−1ba−1ba2ba−2ba−1b2a2bab,

r3(a, b) := baba2b2ab−1ab2a2bab2,

r4(a, b) := ba2ba−1b−3a−2b−1ab2,

r5(a, b) := ab−1a2b−1ab−1a−2b−1a−2ba−2ba−1ba2ba

of lengths 12, 18, 18, 14 and 22, respectively. We will simply write r1, . . . , r5 instead
of r1(a, b), . . . , r5(a, b) or r1(x, y), . . . , r5(x, y) if the context is unambiguous, like in
the presentations of 〈a, b〉 and 〈x, y〉 given below. Using GAP ([6]), we have done
the following computations.
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Observation 13. Let Γ, a, a2, b1, b, b3, x, y, r1, r2, r3, r4, r5 be as above. Then

(1) Γab ∼= Z2 × Z4 × Z4.
(2) (Γ′)ab ∼= Z8 × Z8 × Z16.
(3) [Γ : 〈a, b〉] = 2 such that a2, b1 /∈ 〈a, b〉 and b3 = ab−1a.
(4) 〈a, b〉 has the finite presentation 〈a, b | r1, r2, r3, r4, r5〉. There is no shorter

non-trivial freely reduced relator than r1.
(5) 〈a, b〉ab ∼= 〈a, b | r1, r2, r3, r4, r5, [a, b]〉 ∼= 〈a, b | a8, b8, [a, b]〉 ∼= Z8 × Z8.
(6) 〈a, b〉′ = 〈[a, b], [a, b−1], [a−1, b], [a, b2], [a2, b]〉.
(7) (〈a, b〉′)ab ∼= Z8 × Z8 × Z64.
(8) r1(x, y) = 34, r2(x, y) = 54, r3(x, y) = 3454, r4(x, y) = r5(x, y) = 1.

By Lemma 3(3),(8) we have

Z × Z ∼= 〈34, 54〉 < Z〈x, y〉 < 〈−1, 3, 5〉 ∼= Z2 × Z × Z.

It will turn out that

Z〈x, y〉 = 〈34, 54〉 = 〈r1(x, y), r2(x, y)〉.

This enables us to compute an explicit presentation of the group 〈x, y〉 in the
following proposition:

Proposition 14. Let Γ, a1, a2, b1, b2, b3, x, y, a, b, r1, r2, r3, r4, r5 be as above. Then

(1) Z〈x, y〉 = 〈34, 54〉.
(2) 〈x, y〉 has a finite presentation

〈x, y | r4, r5, r1r2r
−1
3 , [x, r1], [x, r2], [y, r1], [y, r2]〉

= 〈x, y |

yx2yXY 3X2Y xy2,

xY x2Y xY X2Y X2yX2yXyx2yx,

yx2yxY x3yx2yX2yXy2x2yxY XYX2Y 2XyXY 2X2Y XY,

xyx2yxY x4Y XyX4yXYX2Y,

yXyx2yX2yXy2x2yxyXYXYX2Y 2xY x2Y X2Y xY x,

y2x2yxY x4Y xY XyX4yXYX2Y,

yXyXyx2yX2yXy2x2yxY XYX2Y 2xY x2Y X2Y xY x〉,

where we write X := x−1 and Y := y−1. There is no shorter non-trivial
freely reduced relator than r4(x, y) in 〈x, y〉.

(3) 〈x, y〉 is torsion-free.
(4) 〈x, y〉ab ∼= Z × Z and (〈x, y〉′)ab ∼= Z8 × Z8 × Z64.
(5) 〈x, y〉′ has amalgam decompositions

F65 ∗F385
F65 and F129 ∗F513

F129.

Moreover, the group 〈x, y〉′′ has amalgam decompositions

F262145 ∗F1572865
F262145 and F524289 ∗F2097153

F524289.

(6) The two quaternions

y = 1 + 2j and xy−1x = 3 · 5−1(1 + 2k)

generate a free subgroup F2 of 〈x, y〉.
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(7a) Let r := [x, yx−1y] and q := x−1rx. Then the two quaternions

r2qr4 = 3−25−12(1700294841 + 519258632i− 556215472j+ 1165319056k)

and

r4qr2 = 3−25−12(1700294841 + 1191258632i+ 283784528j+ 661319056k)

generate a free subgroup F2 of 〈x, y〉′.
(7b) The two quaternions

[xy−1x, y] = 5−2(−7 − 8i− 16j + 16k)

and

[y−1, xy−1x] = 5−2(−7 − 8i− 16j − 16k)

generate a free subgroup F2 of 〈x, y〉′.
(7c) The two quaternions

y8

54
= 5−4(−527 + 336j)

and
54(xy−1x)8

38
= 5−4(−527 + 336k)

generate a free subgroup F2 of 〈x, y〉′.
(8) Let

w1 := xy−1x−1y−1x−2y−2 = 3−35−2(5 + 4i+ 6j − 2k)

and

w2 := y−1x2y−1xy−1xy−1x2 = −345−4(11/3 + 4i+ 6j − 2k).

Then 〈w1, w2〉 is a subgroup of 〈x, y〉 isomorphic to Z × Z.

Proof. (1) Let z := 1 + j − k, s := 1 + 2i, t := 1 + 2k, and let

G := 〈x, z, s, y, t〉 < Q3,5.

Our first goal is to obtain an explicit finite presentation of G. This will be
useful to compute Z〈x, y〉.

Let u1, . . . , u6 be the six defining relators of Γ from above, i.e.

u1(a1, a2, b1, b2, b3) := a1b1a2b2,

u2(a1, a2, b1, b2, b3) := a1b2a2b
−1
1 ,

u3(a1, a2, b1, b2, b3) := a1b3a
−1
2 b1,

u4(a1, a2, b1, b2, b3) := a1b
−1
3 a1b

−1
2 ,

u5(a1, a2, b1, b2, b3) := a1b
−1
1 a−1

2 b3,

u6(a1, a2, b1, b2, b3) := a2b3a2b
−1
2 .

As in Lemma 3(3), it is easy to see that ZG < 〈−1, 3, 5〉. On the other
hand, we check that

−1 = u5(x, z, s, y, t) = xs−1z−1t ∈ G,

3 = u6(x, z, s, y, t) = ztzy−1 ∈ G,

5 = −u3(x, z, s, y, t) = −xtz−1s ∈ G.
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This shows that ZG = 〈−1, 3, 5〉. We note that this implies G = Q3,5 and
that G is not torsion-free.

Let ψ be the restriction of ψ3,5 to G. As in Lemma 3(2), we have

ker(ψ : G ։ Γ) = ZG.

Knowing finite presentations of Γ and ZG, it is now possible to compute a
finite presentation of the extension G (for example see [7, Chapter 10.2] for
the detailed explicit general construction of such a presentation). Evaluat-
ing the three other defining relators of Γ

u1(x, z, s, y, t) = xszy = −15,

u2(x, z, s, y, t) = xyzs−1 = −3,

u4(x, z, s, y, t) = xt−1xy−1 = 3/5,

we get the finite presentation

G = 〈x, z, s, y, t | [x, u3], [x, u5], [x, u6],

[z, u3], [z, u5], [z, u6],

[s, u3], [s, u5], [s, u6],

[y, u3], [y, u5], [y, u6],

[t, u3], [t, u5], [t, u6],

u2
5, u1u

−1
3 u−1

6 , u2u5u
−1
6 , u3u4u5u

−1
6 〉.

We have seen that 〈34, 54〉 < Z〈x, y〉 < 〈−1, 3, 5〉. The group 〈34, 54〉 has
index 32 = 2 · 4 · 4 in 〈−1, 3, 5〉, and we write 〈−1, 3, 5〉 as a finite disjoint
union of cosets

〈−1, 3, 5〉 = 〈34, 54〉 ⊔ λ2〈3
4, 54〉 ⊔ . . . ⊔ λ32〈3

4, 54〉,

such that λ2, . . . , λ32 ∈ 〈−1, 3, 5〉\〈34, 54〉. To prove our statement Z〈x, y〉 =
〈34, 54〉, it is enough to check that the index condition

[G : 〈x, y〉] > [G : 〈x, y, λm〉]

is satisfied for all m ∈ {2, . . . , 32}. To see why this is enough, assume
that this index condition holds and that Z〈x, y〉 6= 〈34, 54〉. Then there
is an element γ ∈ Z〈x, y〉 \ 〈34, 54〉, hence γ ∈ λm〈34, 54〉 for some m ∈
{2, . . . , 32}, and therefore λm ∈ Z〈x, y〉 < 〈x, y〉, which is impossible, since
the index condition implies that λm /∈ 〈x, y〉 for all m ∈ {2, . . . , 32}.

Using GAP ([6]) and the finite presentation of G from above, we have
checked that the condition [G : 〈x, y〉] > [G : 〈x, y, λm〉] indeed holds. In
particular, we have [G : 〈x, y〉] = 64 and [G : 〈x, y, λ〉] = 32 < 64, if

λ ∈ {−1, 32,−32, 52,−52, 3252,−3252}.

(2) We obtain the stated finite presentation of 〈x, y〉 as an extension of Z〈x, y〉
by 〈a, b〉. Observe that the four commutator relators in the presentation
express the fact that r1 = 34 and r2 = 54 are in the center of 〈x, y〉.

We have checked with GAP ([6]) that there is no non-trivial freely reduced
relator of length less than 14. Moreover, any freely reduced relator of length
14 is conjugate to r4 or to r−1

4 .
(3) The group 〈x, y〉 is torsion-free by Lemma 9, using that −1 /∈ Z〈x, y〉.
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(4) The abelianization of 〈x, y〉 is easy to compute, once the finite presentation
of 〈x, y〉 given in part (2) of this proposition is known. Alternatively, we
apply Proposition 10(1).

Since −1 /∈ Z〈x, y〉, we have

〈x, y〉′ ∩ Z〈x, y〉 = 1,

hence an isomorphism 〈a, b〉′ ∼= 〈x, y〉′ by the left column of our diagram of
Lemma 3(5). Now, we use Observation 13(7).

(5) Since 〈x, y〉′ ∼= 〈a, b〉′, it is enough to show that 〈a, b〉′ has the claimed amal-
gam decompositions. Let Γ0 be the kernel of the surjective homomorphism
Γ → Z2 × Z2, given by

a1, a2 7→ (1 + 2Z, 0 + 2Z) and b1, b2, b3 7→ (0 + 2Z, 1 + 2Z).

Then Γ0 has by [10, Proposition 1.4] amalgam decompositions F3 ∗F13
F3

and F5∗F17
F5. Commutators in Γ are obviously in Γ0, in particular 〈a, b〉′ <

Γ0. We have checked with GAP ([6]) that 〈a, b〉′ = 〈〈[a, b]〉〉〈a,b〉 is in fact
〈〈[a, b]〉〉Γ, the normal closure of [a, b] in Γ. It follows that 〈a, b〉′ is a normal
subgroup of Γ, hence a normal subgroup of Γ0. The index of 〈a, b〉′ in Γ0 is

[Γ0 : 〈a, b〉′] =
[Γ : 〈a, b〉′]

[Γ : Γ0]
=

[Γ : 〈a, b〉] · |〈a, b〉ab|

[Γ : Γ0]
=

2 · 64

4
= 32.

Now, we apply [4, Corollary 2, Corollary 1] to get the stated amalgam
decompositions of 〈a, b〉′ ∼= 〈x, y〉′, observing that

32 = [F3 : F65] = [F13 : F385] = [F5 : F129] = [F17 : F513].

The second claim follows similarly, using that 〈x, y〉′′ has index 4096 =
8 · 8 · 64 in 〈x, y〉′ by part (4) of this proposition.

(6) A relation in y and xy−1x induces a relation in ψ(y) = b2 and ψ(xy−1x) =
a1b

−1
2 a1 = b3, but F2

∼= 〈b1, b2〉 < 〈b1, b2, b3〉 ∼= F3 < Γ.
(7a) We compute

r = [x, yx−1y] = −
7

25
+

8

75
i+

32

75
j +

64

75
k ∈ 〈x, y〉′

and

q = x−1rx = [y, x−1yx−1] = −
7

25
−

8

25
i+

16

25
j +

16

25
k ∈ 〈x, y〉′,

clearly both of norm 1. Since

r = −
7

25
+

24

25

(

1

9
i+

4

9
j +

8

9
k

)

and

q = −
7

25
−

24

25

(

1

3
i−

2

3
j −

2

3
k

)

,

they are both “rational” in the sense of [3, Definition 4.1], and by [3, Corol-
lary 4.2] we have

F2
∼= 〈r2qr4, r4qr2〉 < 〈x, y〉′ < 〈x, y〉.



16 DIEGO RATTAGGI

(7b) We have ψ([xy−1x, y]) = b3b2b
−1
3 b−1

2 and ψ([y−1, xy−1x]) = b−1
2 b3b2b

−1
3 .

The group 〈b3b2b
−1
3 b−1

2 , b−1
2 b3b2b

−1
3 〉 is free as a subgroup of 〈b2, b3〉 ∼= F2,

but not isomorphic to Z, hence

〈b3b2b
−1
3 b−1

2 , b−1
2 b3b2b

−1
3 〉 ∼= F2.

By Lemma 3(9)

〈[xy−1x, y], [y−1, xy−1x]〉 ∼= F2.

This is clearly a subgroup of 〈x, y〉′.
(7c) Let

q1 :=
y8

54
and q2 :=

54(xy−1x)8

38
.

First recall that 34, 54 ∈ 〈x, y〉. It follows that q1, q2 ∈ 〈x, y〉. We have

ψ(q1) = ψ(y8) = b82

and
ψ(q2) = ψ((xy−1x)8) = b83.

Since 〈b82, b
8
3〉 ∼= F2, Lemma 3(9) implies 〈q1, q2〉 ∼= F2. It is easy to see that

q1 and q2 both have norm 1. In particular 〈q1, q2〉 is a free subgroup of
〈x, y〉 ∩ H(Q)1, i.e. a free subgroup of 〈x, y〉′ using Proposition 10(2).

(8) This example is an illustration of the proof of Theorem 12(6). In [10,
Section 4.1] we have shown that

Γ > 〈a1a2a1a
−1
2 , b−1

2 b−1
1 b−1

3 b1〉 ∼= Z × Z.

Using GAP ([6]) we check that

[Γ : 〈a, b, a1a2a1a
−1
2 〉] = [Γ : 〈a, b, b−1

2 b−1
1 b−1

3 b1〉] = [Γ : 〈a, b〉] = 2,

hence a1a2a1a
−1
2 ∈ 〈a, b〉 and b−1

2 b−1
1 b−1

3 b1 ∈ 〈a, b〉. Indeed, it is easy to
check that

ψ(w1) = ab−1a−1b−1a−2b−2 = a1a2a1a
−1
2

and
ψ(w2) = b−1a2b−1ab−1ab−1a2 = b−1

2 b−1
1 b−1

3 b1.

�

Remark 15. Using the presentation of G = Q3,5 computed in the proof of Propo-
sition 14(1), it is easy to check that Gab and (G/〈〈−1〉〉G)ab are not isomorphic.
Indeed, Gab ∼= Z × Z × Z2 × Z2 × Z4, whereas (G/〈〈−1〉〉G)ab ∼= Z × Z × Z2 × Z4.
This shows that −1 /∈ G′ = Q3,5

′. In the same way, we have also checked that
−1 /∈ Qp,l

′, if (p, l) = (3, 7), (3, 11), (5, 7), or (5, 11), in particular Conjecture 6 and
Conjecture 7 are true for these pairs (p, l).
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See the big diagram below for the relations of some subgroups of Γ and Q3,5

used in some previous proofs. In this diagram, all simple arrows are injective
homomorphisms. A label of the form [n1, . . . , nk] stands for the quotient group
Z/n1Z× . . .×Z/nkZ. The other labels of the injective homomorphisms are indices.
The labels of the two surjective homomorphisms on top right indicate the corre-
sponding kernels. The powers of 2 on the left are the indices of the subgroups of Γ
on the same line.

20 Γ Q3,5
〈−1,3,5〉

oooo

21 〈a, b〉

[2]EEE

bbEEEE

〈x, y〉
〈34,54〉

oooo

64

ccGGGGGGGGG

22 Γ0

[2,2]
ssssssssssss

99sssssssssssss

23 Γ0 ∩ 〈a, b〉

[2]KKKK

eeKKKKK
[2,2]

==

25 Γ′

[2,4,4]

OO

[2,2]KKKKK

eeKKKK

Q′
3,5

∼=
oo

[0,0,2,2,4]

OO

27 〈a, b〉′

[8,8]

OO

[2,2]EE
E

bbEEEE

〈x, y〉′
∼=

oo

[2,2]G
G
G

ccGGG

[0,0]

OO

29 Γ′
0

[2,8,8]

OO

sssssssssssss

[2,2,4]
ssssss

99sssss

211 (Γ0 ∩ 〈a, b〉)′

[4,8,8]

OO

[2,2]KKKK

eeKKKKK [2,2,4]

==

215 Γ′′

[8,8,16]

OO

[2,2,4]KKKKK

eeKKKK

Q′′
3,5

∼=
oo

[8,8,16]

OO

219 〈a, b〉′′

[8,8,64]

OO

16

bbE
EE

EE
EE

E
E

〈x, y〉′′
∼=

oo

16
ccG
G
G
G
G
G
G
G

[8,8,64]

OO

223 Γ′′
0

[16,16,64]

OO

sssssssssssss

256

99sssssssssssss

227 (Γ0 ∩ 〈a, b〉)′′
16

eeKKKKKKKKKKK

256

==

[32,32,64]

OO
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4. The commutative case

In this section, we study the following simple question:

Question 16. Given two distinct odd prime numbers p and l, are there commuting
quaternions x ∈ Xp, y ∈ Xl?

In the following, we will give general (negative and positive) answers to Ques-
tion 16, except in the three cases p ≡ 1, l ≡ 7 (mod 8), p ≡ 7, l ≡ 1 (mod 8) and
p, l ≡ 7 (mod 8), where the situation seems to be quite complicated.

Let Tp,l be the set Qp,l ∩ H(Z), i.e.

Tp,l := {x = x0+x1i+ x2j + x3k ∈ H(Z) ; |x|2 = prls, r, s ∈ N0;

x0 odd, x1, x2, x3 even, if |x|2 ≡ 1 (mod 4) ;

x1 even, x0, x2, x3 odd, if |x|2 ≡ 3 (mod 4)} .

Then clearly Xp ⊂ Tp,l and Xl ⊂ Tp,l. Note that x, y ∈ Tp,l commute, if and only
if ψp,l(x), ψp,l(y) commute in Γp,l, but we will directly work with quaternions here
and not use the group Γp,l anymore.

Let x = x0 + x1i + x2j + x3k ∈ Tp,l such that (x1, x2, x3) 6= (0, 0, 0). We can
write it as

x = x0 + zx(c1i+ c2j + c3k)

such that c1, c2, c3 ∈ Z are relatively prime and zx ∈ Z \ {0}. Up to multiplication
by −1, the integers c1, c2, c3, zx are uniquely determined by x. Therefore we can
define the number

n(x) := c21 + c22 + c23 ∈ N.

Moreover, if x = x0 ∈ Tp,l ∩ Q∗ = Tp,l ∩ Z, we define n(x) := 0.

Remark 17. It is easy to show that n(x) ≡ 1, 2, 3, 5, 6 (mod 8), if n(x) 6= 0.

The function n : Tp,l → N0 is a useful invariant for commutativity:

Lemma 18. Let p, l be two distinct odd prime numbers and let x, y ∈ Tp,l be
commuting quaternions such that x, y /∈ Q∗. Then n(x) = n(y) 6= 0.

Proof. This follows directly from the basic fact (see [8, Section 3] or [11, Lemma 12])
that two quaternions x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k in
H(Q) \ Q commute, if and only if Q(x1, x2, x3) = Q(y1, y2, y3). �

Lemma 18 will be used in Proposition 22 to show that certain pairs x ∈ Xp,
y ∈ Xl cannot commute. To apply this lemma we have to get some knowledge
on n. This is done in Lemma 20 for the cases where |x|2 6≡ 1 (mod 8). First we
state an auxiliary very basic lemma:

Lemma 19. If x0 ∈ Z is odd, then x2
0 ≡ 1 (mod 8).

Proof. Let x0 = 1 + 2t for some t ∈ Z. Then x2
0 = 1 + 4t(1 + t) ≡ 1 (mod 8), since

t(1 + t) is always even. �

Lemma 20. Let p be an odd prime number and let x ∈ Xp.

(1) If p ≡ 5 (mod 8), then n(x) is odd.
(2) If p ≡ 3 (mod 8), then n(x) ≡ 2 (mod 8).
(3) If p ≡ 7 (mod 8), then n(x) ≡ 6 (mod 8).
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Proof. First note that Xp ∩ Q = ∅. Write x = x0 + zx(c1i + c2j + c3k) as in the
definition of n.

(1) Since |x|2 ≡ 1 (mod 4), x0 is odd and zx is even. We have

p = |x|2 = x2
0 + z2

xn(x) ≡ 5 (mod 8).

If n(x) would be even, then z2
xn(x) ≡ 0 (mod 8), hence x2

0 ≡ 5 (mod 8),
contradicting Lemma 19.

(2) Here, |x|2 ≡ 3 (mod 4), hence x0, zx are odd and n(x) is even (as a sum of
two odd squares and one even square). We have

p = |x|2 = x2
0 + z2

xn(x) ≡ 3 (mod 8),

hence z2
xn(x) ≡ 2 (mod 8) using Lemma 19. Since z2

x ≡ 1 (mod 8) by
Lemma 19, it follows that n(x) ≡ 2 (mod 8).

(3) The proof is completely analogous to the proof of part (2).

�

Remark 21. We will later see from Table 4 that all of the possibilities n(x) ≡ 1, 3, 5
(mod 8) (in view of Remark 17 and Lemma 20(1)) can be realized if p ≡ 5 (mod 8).
Moreover, in the case p ≡ 1 (mod 8) not treated in Lemma 20, all possibilities
n(x) ≡ 1, 2, 3, 5, 6 (mod 8) can be realized.

Proposition 22. Let p, l be two distinct odd prime numbers. Suppose that p, l 6≡ 1
(mod 8) and p 6≡ l (mod 8). Then there are no commuting quaternions x ∈ Xp,
y ∈ Xl.

Proof. This follows directly from Lemma 18, using Lemma 20. �

To obtain positive answers to Question 16, we will use some known results on
prime numbers of the form r2 +ms2, first for m = 1 and m = 2 in Proposition 24,
later for m = 6 and m = 22 in Proposition 25.

Lemma 23. (Fermat, see [2, (1.1)]) Let p be an odd prime number. There are
x0, x1 ∈ Z such that x2

0 + x2
1 = p, if and only if p ≡ 1 (mod 4). There are x0, z ∈ Z

such that x2
0 + 2z2 = p, if and only if p ≡ 1, 3 (mod 8).

This lemma can be applied as follows:

Proposition 24. Let p, l be two distinct odd prime numbers. Suppose that either
p, l ≡ 1 (mod 4) or that p, l ≡ 1, 3 (mod 8). Then there are commuting quaternions
x ∈ Xp, y ∈ Xl.

Proof. If p, l ≡ 1 (mod 4) then by Lemma 23, there are x0, y0 odd, x1, y1 even,
such that

x2
0 + x2

1 = p and y2
0 + y2

1 = l.

Now we take the commuting quaternions x = x0 +x1i ∈ Xp and y = y0 + y1i ∈ Xl.
If p ≡ 1 (mod 8), then by Lemma 23 there are x0, z ∈ Z such that x2

0 + 2z2 = p.
It follows that x0 is odd, hence 2z2 ≡ 0 (mod 8) by Lemma 19 and z is even (but
non-zero). We choose

x := x0 + z(j + k) ∈ Xp,

in particular |x|2 = x2
0 + 2z2 = p and n(x) = 2.
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If p ≡ 3 (mod 8), then again x2
0 + 2z2 = p by Lemma 23, but here x0 and z are

both odd, and we take as above

x := x0 + z(j + k) ∈ Xp,

such that |x|2 = p and n(x) = 2.
In the same way we construct

y := y0 + zy(j + k) ∈ Xl

such that |y|2 = l ≡ 1, 3 (mod 8) and n(y) = 2. Clearly xy = yx by construction.
�

We illustrate the results of Proposition 22 and Proposition 24 in Table 1 for p, l
taken modulo 8 (“+” means that there are always commuting quaternions x ∈ Xp,
y ∈ Xl, “−” means that there are never such commuting quaternions, “±” means
that both cases happen).

(mod 8) l ≡ 1 3 5 7
p ≡ 1 + + + ±

3 + + − −
5 + − + −
7 ± − − ±

Table 1. Existence and non-existence of commuting quaternions

In the three cases p ≡ 1, l ≡ 7 (mod 8), p ≡ 7, l ≡ 1 (mod 8) and p, l ≡ 7
(mod 8) excluded from Proposition 22 and Proposition 24, it seems to be more
difficult to decide in general by congruence conditions whether or not there are
commuting quaternions x ∈ Xp, y ∈ Xl. We illustrate this with results for some
subcases of p, l ≡ 7 (mod 8) and p ≡ 1, l ≡ 7 (mod 8):

Proposition 25. Let p, l be two distinct odd prime numbers.

(1) Suppose that p, l ≡ 7 (mod 24) or p, l ≡ 15, 23, 31, 47, 71 (mod 88). Then
there are commuting quaternions x ∈ Xp, y ∈ Xl.

(2) Suppose that p ≡ 1, l ≡ 7 (mod 24) or p ≡ 1, 9, 25, 49, 81 (mod 88), l ≡
15, 23, 31, 47, 71 (mod 88). Then there are commuting quaternions x ∈ Xp,
y ∈ Xl.

Proof. (1) A prime number p is of the form x2
0 + 6z2, if and only if p ≡ 1, 7

(mod 24) (see [2] for a proof, but beware of the misprint in [2, (2.28)] stating
the condition (mod 12) instead of (mod 24)). Let p, l ≡ 7 (mod 24). There
are x0, z ∈ Z such that

p = x2
0 + 6z2 = x2

0 + (2z)2 + z2 + z2.

It follows that x0 and z are odd. Take

x := x0 + z(2i+ j + k) ∈ Xp,

hence |x|2 = x2
0 + 6z2 = p and n(x) = 6. In the same way, we choose

y := y0 + zy(2i+ j + k) ∈ Xl

such that |y|2 = y2
0 + 6z2

y = l, n(y) = 6 and xy = yx.
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If p, l ≡ 15, 23, 31, 47, 71 (mod 88), then we can give a similar proof,
using the fact (see [2, (2.28)]) that a prime number p is of the form x2

0+22z2,
if and only if p ≡ 1, 9, 15, 23, 25, 31, 47, 49, 71, 81 (mod 88). Observe that
22z2 ≡ 6 (mod 8) if z is odd, and 22z2 ≡ 0 (mod 8) if z is even. Therefore
z is odd here. We take

x := x0 + z(2i+ 3j + 3k) ∈ Xp,

hence |x|2 = x2
0 + 22z2 = p and n(x) = 22. Now, we are done by the

analogous construction for y.
(2) Let p ≡ 1 (mod 24). The proof is similar as in (1), but here p = x2

0 + 6z2

for some x0 odd, z =: 2z̃ even (and non-zero), hence

p = x2
0 + 24z̃2 = x2

0 + (4z̃)2 + (2z̃)2 + (2z̃)2

and we choose
x := x0 + z̃(4i+ 2j + 2k)

which commutes with 2i+ j + k.
Let p ≡ 1, 9, 25, 49, 81 (mod 88). Similarly as above we can choose

x := x0 + z̃(4i+ 6j + 6k)

of norm x2
0 + 22(2z̃)2 commuting with 2i+ 3j + 3k.

�

The two quaternions x = 1 + 2i and y = 1 + 4k do not commute, but n(x) =
n(y) = 1, so the converse of Lemma 18 is certainly not true. However, the function
n determines the existence of commuting quaternions of given norms.

Proposition 26. Let p, l be two distinct odd prime numbers and let x, y ∈ Tp,l
such that n(x) = n(y). Then there are commuting quaternions x̂, ŷ ∈ Tp,l such that
|x̂|2 = |x|2 and |ŷ|2 = |y|2.

Proof. If n(x) = n(y) = 0, then x = x0, y = y0 and we can take x̂ := x, ŷ := y.
Now suppose that n(x) = n(y) 6= 0. Write

x = x0 + x1i+ x2j + x3k = x0 + zx(c1i+ c2j + c3k)

such that c1, c2, c3 ∈ Z are relatively prime and zx ∈ Z \ {0}, and write

y = y0 + y1i+ y2j + y3k = y0 + zy(d1i+ d2j + d3k)

such that d1, d2, d3 ∈ Z are relatively prime and zy ∈ Z \ {0}. Then by assumption

c21 + c22 + c23 = n(x) = n(y) = d2
1 + d2

2 + d2
3.

If |x|2 ≡ 1 (mod 4), then zx is even (and non-zero). Let

x̂ := x0 + zx(d1i+ d2j + d3k) ∈ Tp,l.

Then
|x̂|2 = x2

0 + z2
xn(y) = x2

0 + z2
xn(x) = |x|2

and x̂ commutes with ŷ := y.
If |y|2 ≡ 1 (mod 4), then we imitate this proof interchanging x and y.
If |x|2, |y|2 ≡ 3 (mod 4), then x0, zx, c2, c3, y0, zy, d2, d3 are odd, c1, d1 are

even and we can take

x̂ := x0 + zx(d1i+ d2j + d3k) ∈ Tp,l

and ŷ := y as above. �
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For an odd prime number p we consider the set n(Xp) = {n(x) : x ∈ Xp}. This
is a finite subset of N satisfying maxn(Xp) ≤ p− 1.

Corollary 27. Let p, l be two distinct odd prime numbers. There are commuting
quaternions x ∈ Xp, y ∈ Xl, if and only if n(Xp) ∩ n(Xl) 6= ∅.

Proof. We combine Lemma 18 and Proposition 26 using that (Xp ∪Xl) ⊂ Tp,l and
(Xp ∪Xl) ∩ Q = ∅. �

For p < 200, we list all sets n(Xp) in Table 3 in the Appendix. It shows for ex-
ample that there are prime numbers p, l ≡ 7 (mod 8) excluded from Proposition 25
with commuting quaternions x ∈ Xp, y ∈ Xl. For example take p = 47 and l = 167
(such that l ≡ 23 (mod 24) and l ≡ 79 (mod 88)), where n(X47)∩n(X167) = {46},
and take commuting quaternions x = 1 + 6i+ j + 3k and y = 11 + 6i+ j + 3k such
that |x|2 = 47, |y|2 = 167 and n(x) = n(y) = 46.

In Table 5 we also list n(Xp) for all prime numbers p < 1000 satisfying p ≡ 23
(mod 24) and p ≡ 7, 39, 63, 79, 87 (mod 88), that is for all prime numbers p ≡ 7
(mod 8), p < 1000, excluded from Proposition 25(1).

Lemma 28. Let p be an odd prime number and m ∈ n(Xp). Then there exist
r, s ∈ N such that p = r2 +ms2.

Proof. Let x = x0 + x1i + x2j + x3k ∈ Xp such that n(x) = m. Since n(x) =
(x2

1 + x2
2 + x2

3)/t
2 for some t ∈ N, we have p = x2

0 + x2
1 + x2

2 + x2
3 = x2

0 +mt2, i.e.
we can take s = t and r = |x0|. �

The converse of Lemma 28 is true in some special cases as seen in the proofs of
Proposition 24 and Proposition 25. However it is not true in general, for example
take p = 7, m = 3, r = 2, s = 1 and observe that m /∈ n(X7) = {6}.

Corollary 29. Let p, l be two distinct odd prime numbers. If there are commuting
quaternions x ∈ Xp, y ∈ Xl, then there exists an m ∈ N and r1, r2, s1, s2 ∈ N such
that p = r21 +ms21 and l = r22 +ms22.

Proof. Combine Corollary 27 and Lemma 28. �

For p an odd prime number, let n(Xp)min be the smallest element in n(Xp). From
what we have seen, it immediately follows that n(Xp)min = 1, if p ≡ 1 (mod 4),
n(Xp)min = 2, if p ≡ 3 (mod 8), and n(Xp)min = 6, if p ≡ 7 (mod 24). In the
remaining case p ≡ 23 (mod 24), there seems to be no upper bound for n(Xp)min.
We compute for example n(X23)min = 14, n(X47)min = 22, n(X167)min = 46,
n(X503)min = 62, n(X1223)min = 134, n(X1823)min = 142, n(X1847)min = 166,
n(X4703)min = 214, n(X8543)min = 262, n(X9743)min = 334. This phenomenon
makes it difficult to answer Question 16 in full generality.
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5. Appendix: some lists

In the following list (Table 2), we give some examples of pairs x ∈ Xp, y ∈ Xl

such that the index of 〈ψp,l(x), ψp,l(y)〉 in Γp,l is finite (in particular Theorem 12
can be applied). This index is given in the fifth column of the list. We have used
GAP ([6]) for the computations. We see that for (p, l) = (3, 5) there are only two
possibilities for the index and abelianization. For the other pairs (p, l), we have
therefore only included some “typical” examples to keep the list reasonably short.
It also happened that for some non-commuting pairs x, y (for example x = 1+j+k,
y = 1 + 6i + 2k, or if p, l are large) we were not able to compute the index and
the abelianization. In these cases we do not know if the index is indeed infinite or
finite (but perhaps very large or difficult to compute). Recall that for free groups
〈ψp,l(x), ψp,l(y)〉, the index would be infinite.

p l x y index 〈ψp,l(x), ψp,l(y)〉ab

3 5 1 + j + k 1 + 2i 4 Z8 × Z16

1 + j + k 1 + 2j 2 Z8 × Z8

1 + j + k 1 + 2k 2 Z8 × Z8

1 + j − k 1 + 2i 4 Z8 × Z16

1 + j − k 1 + 2j 2 Z8 × Z8

1 + j − k 1 + 2k 2 Z8 × Z8

3 7 1 + j + k 1 + 2i+ j + k 4 Z8 × Z16

1 + j + k 1 + 2i+ j − k 2 Z8 × Z8

3 11 1 + j + k 1 + j + 3k 2 Z8 × Z8

1 + j + k 1 + j − 3k 8 Z8 × Z32

3 13 1 + j + k 1 + 2i+ 2j + 2k 4 Z8 × Z16

1 + j + k 3 + 2i 4 Z8 × Z16

1 + j + k 3 + 2j 2 Z8 × Z8

3 17 1 + j + k 1 + 4i 16 Z8 × Z64

1 + j + k 1 + 4j 8 Z8 × Z32

1 + j + k 3 + 2i+ 2j 2 Z8 × Z8

1 + j + k 3 + 2j − 2k 8 Z8 × Z32

3 19 1 + j + k 1 + 4i+ j + k 16 Z8 × Z64

1 + j + k 1 + 4i+ j − k 2 Z8 × Z8

1 + j + k 1 + 3j − 3k 2 Z8 × Z8

1 + j + k 3 + j − 3k 8 Z8 × Z32

3 23 1 + j + k 1 + 2i+ 3j + 3k 4 Z8 × Z16

1 + j + k 1 + 2i+ 3j − 3k 48 Z8 × Z40

1 + j + k 3 + 2i+ j + 3k 2 Z8 × Z8

3 29 1 + j + k 3 + 4i+ 2j 2 Z8 × Z8

1 + j + k 3 + 2i+ 4j 4 Z8 × Z16

1 + j + k 5 + 2i 160 Z8 × Z16

1 + j + k 5 + 2j 2 Z8 × Z8

3 31 1 + j + k 1 + 2i+ j + 5k 4 Z8 × Z16

1 + j + k 1 + 2i+ j − 5k 48 Z8 × Z40

1 + j + k 5 + 2i+ j − k 80 Z8 × Z8

1 + j + k 3 + 2i+ 3j + 3k 4 Z8 × Z16

1 + j + k 3 + 2i+ 3j − 3k 48 Z8 × Z40
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3 37 1 + j + k 1 + 6i 4 Z8 × Z16

1 + j + k 1 + 6j 22 Z8 × Z8

1 + j + k 1 + 2i+ 4j + 4k 4 Z8 × Z16

1 + j + k 1 + 4i+ 2j + 4k 22 Z8 × Z8

1 + j + k 1 + 4i+ 2j − 4k 144 Z8 × Z32

1 + j + k 5 + 2i+ 2j + 2k 4 Z8 × Z16

1 + j + k 5 + 2i+ 2j − 2k 160 Z8 × Z16

3 41 1 + j + k 1 + 2j + 6k 8 Z8 × Z32

1 + j + k 1 + 2j − 6k 32 Z8 × Z128

1 + j + k 1 + 2i+ 6k 48 Z8 × Z40

1 + j + k 3 + 4i+ 4j 8 Z8 × Z32

1 + j + k 3 + 4i− 4k 32 Z8 × Z128

1 + j + k 5 + 4j 8 Z8 × Z32

3 43 1 + j + k 3 + 3j − 5k 32 Z8 × Z128

1 + j + k 5 + 3j − 3k 80 Z8 × Z8

1 + j + k 1 + 4i+ j + 5k 8 Z8 × Z32

1 + j + k 1 + 4i+ j − 5k 144 Z8 × Z32

1 + j + k 5 + 4i+ j + k 16 Z8 × Z64

1 + j + k 5 + 4i+ j − k 80 Z8 × Z8

1 + j + k 3 + 4i+ 3j + 3k 16 Z8 × Z64

1 + j + k 3 + 4i+ 3j − 3k 144 Z8 × Z32

3 47 1 + j + k 3 + 2i+ 3j − 5k 4 Z8 × Z16

1 + j + k 5 + 2i+ 3j − 3k 1920 Z8 × Z40

1 + j + k 1 + 6i+ j + 3k 80 Z8 × Z72

1 + j + k 1 + 6i+ j − 3k 96 Z8 × Z80

1 + j + k 3 + 6i+ j + k 4 Z8 × Z16

3 53 1 + j + k 1 + 4j + 6k 22 Z8 × Z8

1 + j + k 3 + 2i+ 2j + 6k 4 Z8 × Z16

1 + j + k 7 + 2k 22 Z8 × Z8

3 59 1 + j + k 5 + 4i+ 3j + 3k 16 Z8 × Z64

3 61 1 + j + k 3 + 4j + 6k 2 Z8 × Z8

1 + j + k 3 + 4j − 6k 80 Z24 × Z40

1 + j + k 5 + 6k 2 Z8 × Z8

1 + j + k 5 + 4i+ 2j + 4k 2 Z8 × Z8

3 67 1 + j + k 1 + 4i+ j + 7k 144 Z8 × Z32

1 + j + k 1 + 4i+ j − 7k 16 Z8 × Z64

1 + j + k 5 + 4i+ j − 5k 144 Z8 × Z32

3 71 1 + j + k 3 + 6i+ j + 5k 96 Z8 × Z80

3 73 1 + j + k 1 + 6j − 6k 8 Z8 × Z32

1 + j + k 1 + 6i+ 6k 2 Z8 × Z8

1 + j + k 1 + 2i+ 2j + 8k 48 Z8 × Z40

1 + j + k 1 + 2i+ 2j − 8k 2 Z8 × Z8

1 + j + k 1 + 8i+ 2j + 2k 64 Z8 × Z256

1 + j + k 3 + 8i 64 Z8 × Z256

1 + j + k 3 + 8j 32 Z8 × Z128

1 + j + k 5 + 4i+ 4j + 4k 16 Z8 × Z64
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1 + j + k 5 + 4i+ 4j − 4k 640 Z8 × Z64

1 + j + k 7 + 2i+ 2j + 4k 2 Z8 × Z8

1 + j + k 7 + 2i+ 2j − 4k 48 Z8 × Z40

1 + j + k 7 + 4i+ 2j + 2k 16 Z8 × Z64

1 + j + k 7 + 4i+ 2j − 2k 672 Z8 × Z64

3 79 1 + j + k 3 + 6i+ 3j + 5k 80 Z8 × Z72

1 + j + k 5 + 2i+ j − 7k 4 Z8 × Z16

1 + j + k 5 + 6i+ 3j + 3k 4 Z8 × Z16

3 83 1 + j + k 1 + 8i+ 3j + 3k 64 Z8 × Z256

3 89 1 + j + k 3 + 4i+ 8k 16 Z8 × Z64

5 7 1 + 2i 1 + 2i+ j + k 4 Z8 × Z16

1 + 2j 1 + 2i+ j + k 2 Z8 × Z8

5 11 1 + 2i 1 + j + 3k 4 Z8 × Z16

1 + 2i 3 + j + k 48 Z16 × Z16

1 + 2j 1 + j + 3k 48 Z8 × Z24

1 + 2j 1 + 3j + k 2 Z8 × Z8

5 13 1 + 2i 1 + 2i+ 2j + 2k 16 Z16 × Z32

1 + 2i 3 + 2j 96 Z16 × Z32

5 17 1 + 2i 1 + 4j 32 Z16 × Z64

1 + 2i 3 + 2i+ 2j 8 Z16 × Z16

1 + 2i 3 + 2j + 2k 192 Z16 × Z64

5 19 1 + 2i 1 + 4i+ j + k 4 Z8 × Z16

1 + 2i 1 + 3j + 3k 96 Z8 × Z48

1 + 2i 3 + j + 3k 48 Z16 × Z16

1 + 2j 1 + 4i+ j + k 144 Z8 × Z32

1 + 2j 1 + 3j + 3k 48 Z8 × Z24

1 + 2j 3 + 3j + k 24 Z8 × Z16

5 23 1 + 2i 1 + 2i+ 3j + 3k 96 Z8 × Z48

1 + 2i 3 + 2i+ j + 3k 4 Z8 × Z16

1 + 2j 1 + 2i+ 3j + 3k 112 Z8 × Z24

1 + 2j 3 + 2i+ 3j + k 24 Z8 × Z16

5 29 1 + 2i 3 + 4i+ 2j 8 Z16 × Z16

1 + 2i 3 + 2i+ 4j 32 Z16 × Z64

1 + 2i 3 + 2j + 4k 96 Z16 × Z32

1 + 2i 5 + 2j 8 Z16 × Z16

5 31 1 + 2i 1 + 2i+ j + 5k 224 Z8 × Z48

1 + 2j 1 + 2i+ j + 5k 240 Z8 × Z56

1 + 2j 3 + 2i+ 3j + 3k 1344 Z8 × Z48

5 37 1 + 2i 1 + 4i+ 2j + 4k 8 Z16 × Z16

5 41 1 + 2i 1 + 2j + 6k 16 Z16 × Z32

1 + 2i 1 + 2i+ 6k 192 Z16 × Z48

1 + 2i 3 + 4j + 4k 768 Z16 × Z256

1 + 2i 3 + 4i+ 4k 32 Z16 × Z64

1 + 2i 5 + 4j 32 Z16 × Z64

5 43 1 + 2j 3 + 3j + 5k 24 Z8 × Z16

1 + 2j 3 + 5j + 3k 48 Z8 × Z24
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1 + 2j 3 + 4i+ 3j + 3k 24 Z8 × Z16

5 47 1 + 2i 3 + 2i+ 5j − 3k 288 Z16 × Z32

1 + 2j 3 + 2i+ 5j + 3k 112 Z8 × Z24

7 11 1 + 2i+ j + k 1 + j + 3k 2 Z8 × Z8

1 + 2i+ j + k 1 + j − 3k 4 Z8 × Z16

1 + 2i+ j + k 3 + j + k 20 Z8 × Z16

1 + 2i+ j + k 3 + j − k 48 Z8 × Z24

7 13 1 + 2i+ j + k 1 + 2i+ 2j + 2k 4 Z8 × Z48

1 + 2i+ j + k 1 − 2i+ 2j + 2k 32 Z24 × Z48

1 + 2i+ j + k 3 + 2i 4 Z8 × Z48

1 + 2i+ j + k 3 + 2j 48 Z8 × Z24

7 17 1 + 2i+ j + k 1 + 4i 16 Z8 × Z64

1 + 2i+ j + k 1 + 4j 192 Z8 × Z32

1 + 2i+ j + k 3 + 2i+ 2j 48 Z8 × Z24

1 + 2i+ j + k 3 + 2i− 2j 2736 Z8 × Z40

1 + 2i+ j + k 3 + 2j + 2k 16 Z8 × Z64

1 + 2i+ j + k 3 + 2j − 2k 192 Z8 × Z96

7 19 1 + 2i+ j + k 1 + 4i+ j + k 4 Z8 × Z48

1 + 2i+ j + k 1 + 4i+ j − k 48 Z24 × Z40

1 + 2i+ j + k 1 + 4i− j − k 160 Z24 × Z48

1 + 2i+ j + k 1 + 3j + 3k 160 Z24 × Z48

1 + 2i+ j + k 3 + j + 3k 48 Z24 × Z40

1 + 2i+ j + k 3 + j − 3k 4 Z8 × Z48

7 23 1 + 2i+ j + k 3 + 2i+ 3j − k 192 Z8 × Z96

7 29 1 + 2i+ j + k 3 + 4i+ 2j 48 Z8 × Z8

1 + 2i+ j + k 3 + 2j − 4k 2 Z8 × Z8

1 + 2i+ j + k 5 + 2j 48 Z8 × Z8

7 31 1 + 2i+ j + k 1 + 2i− j + 5k 240 Z24 × Z56

1 + 2i+ j + k 3 + 2i+ 3j − 3k 240 Z24 × Z56

11 13 1 + j + 3k 1 + 2i+ 2j − 2k 4 Z8 × Z16

1 + j + 3k 3 + 2k 72 Z8 × Z16

3 + j + k 1 + 2i+ 2j − 2k 288 Z8 × Z48

3 + j + k 3 + 2j 72 Z8 × Z16

3 + j − k 1 + 2i− 2j + 2k 4 Z8 × Z16

11 17 1 + j + 3k 1 + 4j 192 Z8 × Z96

1 + j + 3k 1 + 4k 8 Z8 × Z32

1 + j + 3k 3 + 2i+ 2k 72 Z8 × Z16

1 + j + 3k 3 + 2j + 2k 8 Z8 × Z32

3 + j + k 3 + 2i+ 2j 144 Z8 × Z24

11 19 3 + j + k 1 + 4i+ j + k 80 Z8 × Z192

3 + j + k 3 + j − 3k 96 Z16 × Z32

11 23 1 + j + 3k 2 + i+ 3j + 3k 80 Z8 × Z72

1 + j + 3k 2 + i+ 3j − 3k 56 Z8 × Z16

3 + j + k 2 + i+ 3j − 3k 336 Z8 × Z16

3 + j + k 2 + 3i+ j − 3k 96 Z8 × Z48
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11 29 1 + j + 3k 3 + 2j + 4k 2 Z8 × Z8

1 + j + 3k 5 + 2k 2 Z8 × Z8

11 31 3 + j + k 1 + 2i+ j − 5k 2 Z8 × Z8

11 37 1 + j + 3k 1 + 2i+ 4j − 4k 56 Z8 × Z16

1 + j + 3k 1 + 4i+ 2j + 4k 336 Z8 × Z80

11 41 3 + j + k 1 + 2j + 6k 8 Z8 × Z32

3 + j + k 5 + 4j 8 Z8 × Z32

13 17 3 + 2i 3 + 2i+ 2j 288 Z16 × Z32

13 19 1 + 2i+ 2j + 2k 1 + 4i+ j − k 4 Z8 × Z48

1 + 2i+ 2j + 2k 3 + j − 3k 4 Z8 × Z48

13 23 3 + 2i 3 + 2i+ j + 3k 1152 Z8 × Z32

3 + 2j 1 + 2i+ 3j + 3k 24 Z8 × Z16

13 29 3 + 2i 3 + 2i+ 4j 384 Z32 × Z64

13 31 1 + 2i+ 2j + 2k 3 + 2i+ 3j − 3k 4 Z8 × Z48

17 19 1 + 4i 1 + 4i+ j + k 1920 Z8 × Z64

3 + 2i+ 2j 3 + j + 3k 72 Z8 × Z16

3 + 2j + 2k 1 + 4i+ j − k 576 Z8 × Z288

3 + 2j + 2k 1 + 3j − 3k 576 Z8 × Z288

3 + 2j + 2k 3 + j + 3k 96 Z8 × Z64

19 23 3 + j + 3k 1 + 2i+ 3j − 3k 48 Z8 × Z32

3 + j + 3k 3 + 2i+ j − 3k 24 Z8 × Z16

Table 2: Some examples where [Γp,l : 〈ψp,l(x), ψp,l(y)〉] <∞
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By Corollary 27, the following table can be used to answer Question 16 for all
pairs p, l < 200.

p n(Xp) p n(Xp)
3 {2} 101 {1, 5, 13, 19, 25}
5 {1} 103 {6, 22, 54, 78, 94, 102}
7 {6} 107 {2, 26, 58, 82, 98, 106}

11 {2, 10} 109 {1, 3, 21, 25, 27}
13 {1, 3} 113 {1, 2, 22, 26}
17 {1, 2} 127 {6, 14, 46, 78, 102, 118, 126}
19 {2, 10, 18} 131 {2, 10, 50, 82, 106, 122, 130}
23 {14, 22} 137 {1, 2, 14, 22, 34}
29 {1, 5} 139 {2, 10, 18, 58, 90, 114, 130, 138}
31 {6, 22, 30} 149 {1, 17, 25, 35, 37}
37 {1, 3, 9} 151 {6, 14, 30, 70, 102, 126, 142, 150}
41 {1, 2, 10} 157 {1, 3, 9, 19, 27, 33, 37}
43 {2, 18, 34, 42} 163 {2, 18, 42, 82, 114, 138, 154, 162}
47 {22, 38, 46} 167 {46, 86, 118, 142, 158, 166}
53 {1, 11, 13} 173 {1, 13, 37, 41, 43}
59 {2, 10, 34, 50, 58} 179 {2, 10, 58, 98, 130, 154, 170, 178}
61 {1, 3, 9, 13} 181 {1, 3, 5, 25, 33, 43, 45}
67 {2, 18, 42, 58, 66} 191 {22, 70, 110, 142, 166, 182, 190}
71 {22, 46, 62, 70} 193 {1, 2, 3, 6, 9, 18, 42, 46}
73 {1, 2, 3, 6, 18} 197 {1, 19, 29, 37, 43, 49}
79 {6, 30, 54, 70, 78} 199 {6, 22, 30, 78, 118, 150, 174, 190, 198}
83 {2, 34, 58, 74, 82}
89 {1, 2, 5, 10, 22}
97 {1, 2, 3, 6, 18, 22}

Table 3. n(Xp) for prime numbers 2 < p < 200
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Table 4 contains the same information as Table 3, but is sorted by p (mod 8).
It is a good illustration of Lemma 20.

p n(Xp) p n(Xp)
3 {2} 7 {6}

11 {2, 10} 23 {14, 22}
19 {2, 10, 18} 31 {6, 22, 30}
43 {2, 18, 34, 42} 47 {22, 38, 46}
59 {2, 10, 34, 50, 58} 71 {22, 46, 62, 70}
67 {2, 18, 42, 58, 66} 79 {6, 30, 54, 70, 78}
83 {2, 34, 58, 74, 82} 103 {6, 22, 54, 78, 94, 102}

107 {2, 26, 58, 82, 98, 106} 127 {6, 14, 46, 78, 102, 118, 126}
131 {2, 10, 50, 82, 106, 122, 130} 151 {6, 14, 30, 70, 102, 126, 142, 150}
139 {2, 10, 18, 58, 90, 114, 130, 138} 167 {46, 86, 118, 142, 158, 166}
163 {2, 18, 42, 82, 114, 138, 154, 162} 191 {22, 70, 110, 142, 166, 182, 190}
179 {2, 10, 58, 98, 130, 154, 170, 178} 199 {6, 22, 30, 78, 118, 150, 174, 190, 198}

5 {1} 17 {1, 2}
13 {1, 3} 41 {1, 2, 10}
29 {1, 5} 73 {1, 2, 3, 6, 18}
37 {1, 3, 9} 89 {1, 2, 5, 10, 22}
53 {1, 11, 13} 97 {1, 2, 3, 6, 18, 22}
61 {1, 3, 9, 13} 113 {1, 2, 22, 26}

101 {1, 5, 13, 19, 25} 137 {1, 2, 14, 22, 34}
109 {1, 3, 21, 25, 27} 193 {1, 2, 3, 6, 9, 18, 42, 46}
149 {1, 17, 25, 35, 37}
157 {1, 3, 9, 19, 27, 33, 37}
173 {1, 13, 37, 41, 43}
181 {1, 3, 5, 25, 33, 43, 45}
197 {1, 19, 29, 37, 43, 49}

Table 4. n(Xp) for prime numbers 2 < p < 200, sorted by p (mod 8)
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In Table 5 we list n(Xp) for all prime numbers p < 1000 satisfying p ≡ 23
(mod 24) and p ≡ 7, 39, 63, 79, 87 (mod 88).

p n(Xp)
167 {46, 86, 118, 142, 158, 166}
239 {14, 70, 118, 158, 190, 214, 230, 238}
263 {38, 94, 142, 182, 214, 238, 254, 262}
359 {14, 70, 134, 190, 238, 278, 310, 334, 350, 358}
431 {14, 70, 142, 206, 262, 310, 350, 382, 406, 422, 430}
479 {38, 118, 190, 254, 310, 358, 398, 430, 454, 470, 478}
503 {62, 142, 214, 278, 334, 382, 422, 454, 478, 494, 502}
743 {14, 118, 214, 302, 382, 454, 518, 574, 622, 662, 694, 718, 734, 742}
887 {46, 158, 262, 358, 446, 526, 598, 662, 718, 766, 806, 838, 862, 878, 886}

Table 5. n(Xp) for some prime numbers p ≡ 23 (mod 24)
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