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0 Introduction

In [14], Marc Burger and Shahar Mozes have constructed the first examples of finitely presented
torsion-free simple groups. These groups are cocompact lattices in a product Aut(Za,,) x Aut(Z2,)
of automorphism groups of regular trees, and they are moreover biautomatic, of finite coho-
mological dimension and decomposable as amalgamated free products of finitely generated free
groups. One important step in their construction is a theorem (an analogue of Margulis’ nor-
mal subgroup theorem in the context of Lie groups), saying that for a certain class of lattices
I < Aut(7Z2, ) x Aut(72y, ), every non-trivial normal subgroup of " has finite index. In order to apply
this theorem, strong assumptions on the local transitivity properties of both projections of I' have
to be made. The aim of this paper is to give many examples of lattices I' < Aut(7Za,,) X Aut(Z2,)
whose projections satisfy various transitivity conditions, for example those assumed in the normal
subgroup theorem just mentioned. For the most part, we will restrict to groups I' acting freely
and vertex-transitively on the simply connected 2-dimensional cellular complex 73,, X 72,. In this
case, I' is the fundamental group of a square complex with 73, x 753, as its universal covering
space and having only one vertex.

More precise definitions of the involved groups and cell complexes (respectively their relation)
are given in Section 1. In that section, we also fix our notations and recall some important notions
and tools developed in [14], [15], [16], useful in the study of those lattices, like for example “local
groups” or “irreducibility”.

Section 2 is mainly concerned with explicit constructions of irreducible cocompact lattices
' < Aut(Z2m) x Aut(7z,), whose two projections act locally like the alternating group Ag and
locally primitively, respectively. In particular, we try to analyze in more detail two examples
(Example 1 and Example 3), which seem to be quite similar at first sight, but are very different
regarding their normal subgroup structures. However, several central questions remain open for the
moment and some conjectures are formulated. We believe for instance that Example 1 immediately
leads to a simple group, also sharing all other properties of the remarkable groups constructed in
[14], but which is in contrast to those groups much more easy to describe. For example, besides the
natural presentation as fundamental group of the corresponding square complex, we give explicit
amalgam decompositions.

In Section 3, we first apply several results of [14], [15], [16] to construct a non-residually finite
lattice in Aut(7;) x Aut(712) (Example 8). Then we embed it into finitely presented torsion-
free cocompact lattices in Aut(7g) x Aut(716) and Aut(7g) x Aut(714) respectively, which are
virtually simple (Example 9, Example 10 and Example 11). Note that the “smallest” such group
constructed by Burger and Mozes is a lattice in Aut(7215) X Aut(Z350). An embedding of a known
non-residually finite group (Example 13), presented by Daniel T. Wise in [69], finally leads to the
construction of a simple cocompact lattice in Aut(719) x Aut(Z79) of the form Fy xp,, Fy. Using
similar techniques, we construct in this section many more such simple groups (Table 8), but also
a non-simple group in Aut(739) x Aut(719) without proper subgroups of finite index (Example
18) and a non-residually finite, not virtually torsion-free infinite quotient of a cocompact lattice
in Aut(7Zg) x Aut(7g) (Example 19).

In Section 4, we examine some possible connections between (ir)reducibility of T', (transitivity)
properties of the local permutation groups and the size of I'/[[',T']. We illustrate for instance,
that it is not possible to give a general criterion for irreducibility just in terms of the local groups
Py, and P,. Moreover, some irreducible examples with non-trivial quasi-center (in one or both
projections) are given.

In Section 5, we give examples of “quaternion lattices” in PGL2(Q,) x PGL2(Qy), where p
and [ are distinct odd prime numbers. We realize these groups in several ways, in particular as
linear groups or as group of units (modulo center) of quaternions over a certain ring, and study



finite quotients PGLy(g) and PSLz2(q). We try to give very detailed constructions and proofs
in this section. The standard construction for p,i = 1 (mod 4) is taken from [53] (cf. [43]),
but we extend it here and give some conjectures in particular concerning their abelianization.
This theory has several applications. For example, by proving that the groups are “commutative
transitive”, we give a simple criterion for the existence of “anti-tori”. Moreover, we prove certain
integer quaternions to have non-trivial relations and discuss the existence of free anti-tori and free
subgroups in SO3(Q).

In Section 6, we prove that our groups always have subgroups isomorphic to Z2. This is related
to the existence of periodic tilings of the plane.

In Section 7, we construct a very small 4-vertex square complex, whose fundamental group is a
possible candidate for a finitely presented torsion-free simple group. More 4-vertex examples are
given, demonstrating that the local groups can behave quite differently than in the 1-vertex case.

In Appendix A, we give some supplements to Section 2: more examples, explicit amalgam
decompositions, and some detailed proofs.

We refer to Appendix C for some complete lists in “small dimensions”, which already confirm
the great variety and richness of 1-vertex square complexes.

Most examples of this paper have been found by means of several computer programs written
in GAP ([28]). The main programs are listed and described in Appendix D.

Appendix E is reserved to miscellaneous subjects, including a survey of the history of finitely
presented infinite simple groups and amalgams of free groups.



1 Preliminaries, notations and definitions

Throughout this article, the main object of our study will be a special class of square complexes
which we want to define now. We always assume that m,n € N.

Definition. A (2m,2n)-complez X is a finite 2-dimensional cell complex satisfying the following
properties: Its 1-skeleton X (V) is a connected graph (X (9, E) with vertex set X (*) = {2} consisting
of only one single vertex x and edge set £ = Ej, U E,, decomposed into m geometric “horizontal”

loops alil, ...,at! and n geometric “vertical” loops blﬂﬂ7 ..., bl Following Serre’s terminology

» Ym

for graphs (see [66, Chapter 2.1]), this means that

Eh - {alv"'7amaa;L1a' "7a;1}’ a; = aiila O(ai)

Ey={bi,...,bn, by b 'Y, by =071, o(by)

t(ai)
t(bs)

The desired cell complex X is now constructed by attaching mn geometric squares to X (1), where
the four paths in the boundary of each geometric square are identified alternately with edges in E},
and FE,. This has to be done in such a way that the link Lk(x) of the vertex x becomes a complete
bipartite graph Ko, 2n (where the bipartite structure then is induced by the decomposition of E

as E, U E,). Equivalently, we require that the universal covering space X of X is a product of
two regular trees Ta;, X Tap, where 7y denotes the (infinite) ¢-regular tree.

Example. See Figure 1 for an example of a (2,4)-complex X.

by
ax ay -1
< T x < x a1 ay
Ab; DA Y by
> > * 4 1
ay x x a T b by by by
XM X Lk(z) = Ka4
Figure 1: A (2,4)-complex X
By construction, the fundamental group I' := m(X,z) < Aut(Z2,, X T2,) is a torsion-free

cocompact lattice, acting freely and vertex-transitively on 73, X 72,. The decomposition of F
guarantees that T' < Aut(Zay,) X Aut(72,) < Aut(Zz,, X T2,,). Such a group I' will be called a
(2m, 2n)-group.

A finite presentation of I' can be directly read off from X:

I'={(ai,...,am,b1,...,by | R(m,n)),

where the mn relators in R(m, n) are words of length 4 in the generators a;, b; and their inverses,
coming from the mn geometric squares in X. In our example (Figure 1):

R(l, 2) = {alblalbg, albglalbfl},

i.e.
I'= <a1, bl, b2 | alblalbg, albglalbfl).



Note that there are several different possibilities to describe a geometric square, e.g. in the example
above we have equalities (as geometric squares and as relators)

arbrarby = aybaarby = ay by ta oyt = ay by ey Tyt =

_ _3—1 —-13—-1 -1 __ 3—1 —1;—-1 —1
blalbgal—bgalblal—bl aq b2 aq —b2 aq bl ay .

Any such expression represents the same geometric square and all constructions involving geo-
metric squares (like e.g. the group I' up to isomorphism) will be independent of the choice of
representatives.

Given a (2m, 2n)-group I', we can define a surjective homomorphism of groups

I — 72
a;— (1,0), i=1,...,m
bi— (0,1), j=1,....n

with Zs := Z/27 = {0, 1} written additively. Obviously, the kernel of this homomorphism is a
normal subgroup of I" of index 4. We denote this group by I'g. It is the fundamental group of a
corresponding square complex X with 4 vertices, a 4-fold regular covering of X.

For more details and a more general definition of square complexes, see [16] (see also [69]).

Definition. Since I' < Aut(7z,,) x Aut(73,), we have two canonical projections, the group homo-
morphisms pry : I' = Aut(72,) and pry : I' — Aut(72y,). We define H; := pr;(T"), i = 1,2, where
the closure is taken with respect to the topology of pointwise convergence. With this topology,
Aut(7y), £ > 3, is a locally compact, totally disconnected, uncountable topological group (see
Appendix E.1). Let

QZ(H;) := {h € H, : centralizer Zy,(h) is open in H;}
be the quasi-center of H; (see [15] for an introduction to this group). Finally, we put
Ay =pr(I'N(Hy x {1})) = pry (' N (Aut(Z2m) x {1})) < Aut(Tam)

and
Ay :=pry(T'N ({1} x H2)) = pro(T'N ({1} x Aut(7zy))) < Aut(Z2y).

Observe that
A; = pr;(ker(pry_;)) = ker(prz_,;) < T

and note that A; <QZ(H;), since every discrete normal subgroup of H; is contained in QZ(H;), as
explained in [15]. In particular, we conclude that QZ(H;) = 1 implies an isomorphism I" = pr,_,(T")
and in this case we can see I' as a subgroup of Aut(7Za,,), if i = 2, or as a subgroup of Aut(73,),
ifi = 1.

We now turn to the definition of the “local groups” P, and P,, which will play a major role
in the construction of interesting groups I'. Let Eq(,k) and E,(Lk) be the set of vertical respectively
horizontal reduced paths (i.e. without backtracking) of combinatorial length & € N in X(). In
particular, ESY = E,, E\Y = B,

B =2n- (20— 1) and |BY| = 2m- (2m — D)F.

There is a family of homomorphisms from the free group F,,, of rank m generated by {a1,...,am}
: (k)
to the symmetric group of the set Ey

pglk) :Fyo=(a1,...,0,) — Sym(EM) Son.(2n—1)k-1



and a family of homomorphisms
P By = (by, ..., by) — Sym(EF) = Som.(2m—1)k-1-
We denote their images by
P = im(p) = (o7 (@), i (@) and P = im (o)) = (o (ba), ..., ol (b).
For k = 1, we omit the superscript “(1)” and simply write
pn i ar, . am) = {pn(ai), ..., pulam)) = P, < Sym(E,) = Sym({b1,...,b,, b, ..., b7 }) = Sop,
where for the last isomorphism we always use the explicit identification

E, ={1,...,2n}
ijja
byt e 2n+1—j,

j=1,...,n,and
v (b1, by = {pp(b1), ..., pu(bn)) = P, < Sym(Ey) = Sym({a, ..., am, a;f, ... ,afl}) >~ Som,
via the identification

Eh§{1,...,2m}
ai<—>i,
a; b e 2m 1 -4,

for i =1,...,m. The two homomorphisms p;, and p, are defined as follows: each relator aba’t’ in
R(m,n) gives

as indicated in Figure 2.

/! / /! /

A
A
A
A

V'Y pn(a) Ab by en(@) ab by pv(b)ﬁ AbD by Ipv(b,)lkb

@VI

Figure 2: Visualizing the definition of py,, py

By the link condition in X, these 4mn expressions indeed uniquely determine pj and p,. We
obtain in our example in Figure 1 pp(a1) = (1,3)(2,4), ps(b1) = (1,2), py(b2) = (1,2), hence

P, = <(173)(2a4)> 7o < Sy and P, = <(172)> = S5.



b A A o7V (pu(¥)(2)) (0)
po(V)(a)
VA A py(a)l)

Figure 3: Inductive definition of pﬁf), k>2

If £ > 2, the homomorphisms pﬁf) and pgk) are defined in a similar way, see [16, Chapter 1]. We
give an inductive definition of pﬁf): Leta€ Epand b=10b-bV" € E,(Jk), where V' € E,, V" € gD,
Then

pi (@)(b) := pr(@)(®) - pi ™ (o) (@) (B),

see Figure 3 for an illustration. The homomorphism pg,k) can be defined analogously.

Starting with X, the finite permutation groups quk) and P,Ek) can be effectively computed.
They describe the local actions of the projections of I" on k-spheres in 75, and 75, respectively.
More precisely, let x, be any vertex in 7g,, and let S(x,, k) be the k-sphere (i.e. the set of vertices
in 73, of combinatorial distance k from x, ), then the groups

P < Sym(EW) and Hy(x,)/Ha(S(,, k)) < Sym(S(zy, k))
are permutation isomorphic (see [16, Chapter 1]), where for H < Aut(7;) and S a subset of vertices
in 7y, we always write H(S) to denote the pointwise stabilizer
Stabg (S) ={h € H : h(s) =s, Vs € S}.
The analogous statement holds for P,Ek) and Hy(zp)/H1(S(zh, k)), where xp, is any vertex in Tap,.
For each k € N, there is a commutative diagram

k+1
P§L+)

<a17 ey am> — = P7j(k+1) < Sym(Efjk—H))

ipk
Py
P < Sym(EW)

where pj, is the homomorphism restricting the action of P on the (k + 1)-sphere S(z,,k+1)

to the k-sphere S(z,, k). In particular, P,Sk)‘ divides qukﬂ)‘. Note that

ﬂ kerpglk) = A; and m kerpq()k) = As.
kEN keN
In general, a subgroup H < Aut(7;) is called locally transitive (locally primitive, locally 2-
transitive, ...) if the stabilizer in H of every vertex x in 7y induces a transitive (primitive, 2-
transitive, ...) permutation group on the ¢ neighbouring vertices of x. Finally, we call H locally
oo-transitive, if H(x) acts transitively on S(x, k) for each k > 1 and each vertex z in 7.



Because of the importance of the local groups P;, and P, in our study of X, we will often call
X a (Pn, Py)-complex and the corresponding fundamental group T' a (P, P,)-group.

One of the main notions in the theory of lattices in semisimple Lie groups is irreducibility. In
our case, we adopt the definition given in [16].

Definition. A (2m,2n)-group I is called reducible if pry(T') < Aut(72,) is discrete. Otherwise, T’
is called irreducible. A (2m,2n)-complex X is said to be (ir)reducible if and only if I" = 71 (X, x)
is (ir)reducible.

Remarks. (1) Observe that a subgroup of Aut(7;) is discrete if and only if its vertex stabilizers
are all finite (see Proposition 79 in Appendix E.1).

(2) It is shown in [16, Proposition 1.2] that pr,(I") < Aut(7z,,) is discrete if and only if pry(T') <
Aut(7z,) is discrete.

(3) Note that pry(I") is never dense in Aut(7ay,), i.e. Hy S Aut(7zy,), contrary to “irreducible”
lattices in higher rank semisimple Lie groups.

4) In terms of orders of the local groups P® and P,Sk), I' is reducible if and only if the set
h
{|Pf(bk)|}k€N is bounded, if and only if {|Py(k)|}k€N is bounded.

In geometric terms, X is reducible if and only if X admits a finite covering which is a product
of two graphs (see [16, Chapter 1]). Therefore, a reducible group I' is virtually a direct product
of two free groups of finite rank, in particular I' is residually finite, i.e. the intersection of finite
index subgroups of I is trivial. As a consequence, a non-residually finite I has to be irreducible.
In general, no algorithm is known to determine whether a given I' is reducible or not. However,
a useful sufficient criterion for irreducibility, based on the Thompson-Wielandt theorem (see e.g.
[15, Theorem 2.1.1]), is presented in [16, Proposition 1.3]. We will strongly use the criteria (1)
and (2) of the following proposition based on results in [15] and [16]. The third criterion (3) will
only be used in Theorem 8, where (1) does not apply.

Proposition 1. Let T be a (2m,2n)-group.
(la) Suppose that P, = Agy,, m > 3. Then T is irreducible if and only if

‘P;Ez)‘ = [Asp| (M)Qm _ (2m)! ((Zm— 1)!)%.

2m 2 2

(1b) Suppose that P, = Asp, n > 3. Then T is irreducible if and only if

’Rf?)’ = | Agy| <|A2n|)2n _ (@) ((gn_ 1)!)2,1.

2n 2 2

(2a) T is reducible if and only if there is a number k € N such that |P,Ek+1)| = |P}(Lk)|.
(2b) T is reducible if and only if there is a number k € N such that |P1§k+1)| = |P1§k)|.

(3a) Let P, < Sam be transitive and suppose that for each k > 1 there exist reduced words
b e (by,...,by) and a € {(a1,...,an) with |a| = k such that pgk)(b)(a) = a and p,(D) acts
transitively on Ep \ {a”’ "'}, where b := pgbl)(a)(b) and a =da'-a" with o’ € E,(Ik_l), a’ € Ep

(see Figure 4). Then pry(I") is locally co-transitive, in particular T' is irreducible.

(3b) Let P, < Say be transitive and suppose that for each k > 1 there exist reduced words a €
(a1,...,am) and b € (by,...,b,) with |b| = k such that pﬁf)(a)(b) = b and pp(a) acts
transitively on E, \ {b" '}, where @ := pga‘)(b)(a) and b=V -V witht € EF ™V v € E,.
Then pry(T) is locally co-transitive, in particular T is irreducible.

10
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Figure 4: Notations in Proposition 1(3a)

Proof. We prove (1a), (2a) and (3a). The proofs of (1b), (2b) and (3b) are analogous.

(la)
(20)

The statement follows directly from [15, Proposition 3.3.1].

Obviously, |P}Ek+1)| = |P}Ek)| for some k € N is a necessary condition. We want to prove now,
that it is also sufficient for the reducibility of I'. It is enough to show |P}Ek+2)| = |P}§k+1)|.
First observe that for all vertices x;, € 73, we have

Hi(S(@n, k + 1)) = Hi(S(wn, k)) (%)

since

1= ]p,gk“)/P;L’f)‘ = |Hi(S(xn, k) Hy (S(wn, b + 1))

Assume now that |Pf(Lk+2)| > |P,Ek+1)|. It follows that there is a g € Hy(S(zp, k + 1)) \
Hq(S(zp, k4 2)). But then, for at least one neighbouring vertex y, of xj,

g € Hi(S(yn, k) \ Hi(S(yn, k + 1)),
contradicting (x).
Note that we construct in Example 57 an irreducible 4-vertex square complex such that

|P}(LQ)| = | Py| for some vertex.

We have to show that pr; (I')(zp) acts transitively on S(zp, k) for each k¥ > 1. This is done
by induction on k using the identification (see [16, Chapter 1])

(b1, ..., bp) Z{y €T :pry(y)(zn) = xp}-

For £k = 1, the statement is obvious since Py is transitive. To prove the induction step
k — k+1, note that by induction hypothesis, pr; (T')(zp,) acts transitively on S(xp, k), hence
we have at most 2m — 1 orbits in S(zp, k+ 1). But now, the assumptions (in particular the

transitivity of p,(b)) exactly guarantee that there is in fact only one orbit.

Since P,Ek) is transitive for each k& > 1, the set {|P}Ek)|}keN is not bounded and therefore T is
irreducible.

O

Remark. Note that Proposition 1(1a) is false if P, = Ay (i.e. if m = 2), because there are
irreducible (A4, A1g)-groups such that

A 4
IP?)| =324 < |Ay] <|4—4|> =972

11



(cf. Appendix C.4).

It is shown in [69, Theorem 1.1.18] that I" splits in two ways as a fundamental group of a finite
graph of finitely generated free groups (in the terminology of Bass-Serre theory). We are mainly
interested in amalgamated free products of free groups, i.e. fundamental groups of edges of free
groups.

Proposition 2. Let T be a (2m,2n)-group.

(la) If Py < Sam is a transitive permutation group, then T' can be written as an amalgamated
free product of finitely generated free groups:

r=r, *F1i_omt2mn Fi—mtmn-
We call it the vertical decomposition of T".

(1b) If P, < Sa, is transitive, then we have a horizontal decomposition
I'=F, *F1_2nq2mn Fl*nern'

Proof. The statements follow directly from [69, Theorem 1.1.18] after subdividing the complex X
vertically in the first case and horizontally in the second case. o

Observe that for the indices in the two inclusions in the splitting in Proposition 2(1a) we have
[Fn : Fi_omiomn] = 2m and [Fi—pmimn : Fi—2m+t2mn] = 2. The tree on which I' naturally acts
is 74,,,, the first barycentric subdivision of 73,,. Note that F,, = (b1,...,b,). Further, the second
factor Fi_p4mn is the fundamental group of a graph with m vertices (one for each geometric
edge azil) and mn edges (one for each geometric square in X). Finally, the amalgamated group
Fi_2m+t2mn is the fundamental group of a graph having 2m vertices (one for each edge in E})
and 2mn edges (one for each geometric square in the vertically subdivided complex X’). The
two injections in the amalgamated free product are induced by immersions in X’. Analogous
statements hold for the second splitting of I'.

Proposition 3. Let T be a (2m,2n)-group. We denote by E? the subgroup of Fr, = (b1,...,by) of
index 2 consisting of elements with even length. Analogously, we define F,(nQ) QF, ={a1,...,am).
If p@(Fflz)) < Sopm 18 transitive (which is satisfied if for example Py is a primitive permutation
group), then there is an amalgam decomposition of Ty (the so-called vertical decomposition of Tg)

To = Fon 1 *F _4miamn F2n—1-

If ph(Fg)) < Sap is transitive (which is satisfied if for example P, is primitive), then we get a
horizontal decomposition

Do & Fopm *Fl_dantamn Fom—1.

In particular, if m = n and pv(F,(f)), ph(Fg)) both are transitive, then we have two decompositions
of Ty as

Fop_q % Fo_1.

F(2n71)2
Proof. Again, this can be directly deduced from the more general result [69, Theorem 1.1.18]. O

We call a (2m,2n)-group T' horizontally directed, if a; is not in the same orbit as ai_1 in

the natural action of P, on Ej for all i € {1,...,m}. The term vertically directed is defined
analogously. These definitions are equivalent to those given in [69, Definition 1.1.10]. We formulate
another interesting special case of [69, Theorem 1.1.18] concerning HNN-extensions:
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Proposition 4. Let T be a (2m,2n)-group.

(la) IfT is horizontally directed and Py, has exactly two orbits in its natural action on Ey, then
T is a HNN-extension of the free group F,, = (b1,...,by,) associating subgroups Fi_tmn of
index m.

(1b) If T is vertically directed and P, has exactly two orbits in its natural action on E,, then T’
is a HNN-extension of the free group Fp, = {(a1,...,am) associating subgroups Fi_ni1mn of
inder n.

Remark. Horizontally directed (2m,2n)-groups I satisfy |['*’| = oo, in particular they have a
proper infinite quotient. To see this, let O; be the orbit of a; under the natural action of P, on
E}. Define I' — Z by sending all elements in O; to the generator 1 of Z. If both a; and a;l are
not in Oy, then we map a;, as well as all b;, j = 1,...,n, to the trivial element 0 in Z. The same
statement holds for vertically directed (2m, 2n)-groups.

Definition. Let X be a (2m, 2n)-complex and Y a (2, 272)-complex, where m > m and 7 > n.
We say that X is embedded in Y, if the mn geometric squares of Y contain all mn geometric
squares of X.

Proposition 5. Let the (2m,2n)-complex X be embedded in the (2m,2n)-complex Y, where m >
m and n >n. Then

(1) mX <mY.
(2) |P}§k)(X)| divides |P}Ek) (Y)| and |P1§k) (X)| divides |P1§k)(Y)| for each k € N.
(3) If X is irreducible then Y is irreducible.

Proof. (1) See [8, Proposition I1.4.14(1)].

(2) To take into account the two involved complexes X and Y, we write here Pf(Lk) (X), Pf(Lk) (Y),
PP (X), P,Sk)(Y), Pv,X, Pv,y instead of P,Ek), PP, pv. We prove now that |Pp(X)| divides
|Pn(Y)|. The other statements are proved similarly. Let G be the subgroup of Sa;

G = <p717Y(b1)7 e 7pﬂ7Y(bn)>S2’ﬁL
and A the subset of {1,...,2m} with 2m elements
A={1,...,m2—m+1,...,2m}

Because of the embedding assumption and the link conditions in X and Y, A is G-invariant
and the restriction of G to A is permutation isomorphic to

Ph(X) = <Pv,X(b1), ce 7pﬂ7X(bn)>S27n

via the inclusion

{1,...,2m} — {1,...,2m}
T 1
2m+1—i—2m+1—1,

i=1,...,m, hence |G| = |Pr(X)|- ¢, where ¢ is the order of the pointwise stabilizer of A in
G (cf. [24, p. 17]). The claim follows now, since G is obviously a subgroup of

<Pv,Y(b1); s ,Pv,Y(bn); s 7pv,Y(bﬁ)>327h = Ph(Y)
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(3) The set {|P}Ek) (X)|}ken is unbounded since X is irreducible by assumption, hence by part
(2) also {|P}§k)(Y)|}keN is unbounded, i.e. Y is irreducible, too.
o

Because of the link condition in X, every element v € I' can be brought in a unique normal
form, where the “a’s are followed by b’s” and in a unique normal form, where the “b’s are followed
by a’s”. The following proposition is due to Bridson and Wise (see [9]).

Proposition 6. (see [9, Normal Form Lemma 4.3]) Let T' be a (2m,2n)-group and v € T' any
element. Then 7y can be written as
vy = 040, = 00,

where 04,0, are freely reduced words in the subgroup (ai,...,am) and oy, 0} are freely reduced
words in (b1,...,bn). The words 04,0, 0, 0}, are uniquely determined by y. Moreover, |oq| = |oy,]
and |oy| = |oy|, where | -| is the word length with respect to the standard generators, in particular

|1] = 0. We call 6,04 the ab-normal form and oy0), the ba-normal form of v. The length of 7 is
by definition |y| := |oa| + |ow| = |og| + |og|.

Proof. See [9]. For an implementation in GAP ([28]) to compute the two normal forms of a given
element in I', see Appendix D.6. O

Corollary 7. LetT' = (a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group. Then
1) {a1,...,am) and (by,...,by,) are free subgroups of T'.

2) T is virtually abelian or contains a non-abelian free subgroup.

3) The center ZT is trivial if min{m,n} > 2.

(1)
(2)
3)
(4) T is residually finite if and only if Aut(T") is residually finite.

Proof. (1) This follows from the uniqueness of the normal forms in Proposition 6.

(2) If m > 2 or n > 2 then I' contains a non-abelian free subgroup by (1). If m = n = 1, then
either
' <a1,b1 | a1b1 = b1a1> = ZQ,

or
I' = (a1,b; | arbiay = by),

which has the abelian subgroup (a1, b?) = Z? of index 2.
(3) Assume that there is an element v € ZI'\ {1} and let
=a® . a®p® . pD
be its ab-normal form, where we can assume without loss of generality that £k > 1 and [ > 0.

Take )
ac {a’l’ o ’am?a;@17 ce ,al_l} \ {a(l)va(l)_ } 7é @

Then, we have
aaV . a®p® | pD = ) qRpM)  pg,

The left hand side is already in ab-normal form, hence by uniqueness of the ab-normal form,
we can conclude a = aV), but this is a contradiction to the choice of a, i.e. ZT' = 1.
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(4) By a result of Gilbert Baumslag ([4] or see [47, Theorem IV.4.8]) the group Aut(T') is
residually finite, if I is a finitely generated residually finite group. For the other direction,
first note that if m = 1, then

Pigk) < Som-(@2m—1)k-1 = S2,

hence |P}(Lk)| < 2, k € N, and I is reducible. The same holds if n = 1. In particular, T’
is residually finite, if m = 1 or n = 1. Assume now that I' is non-residually finite, then
min{m,n} > 2, and by (2) we have ZI' = 1, hence I' = Inn(I") < Aut(I') and Aut(T") is
non-residually finite.

O

Remark. Z x F, is a (2, 2n)-group with a non-trivial center.
Proposition 8. LetT' = (a1,...,am,b1,...,b, | R(m,n)) be a (2m, 2n)-group.

(la) Assume that there is an element a; € {a1,...,am} such that pp(a;)(b) # b for all b € E,
(i.e. R(m,n) has no relator equivalent to a relator of the form a;bab=! for all a € Ej and
be E,). Then Zr(a;) = (a;).

(1b) Assume that there is an element b; € {b1,...,by} such that p,(b;)(a) # a for all a € Ej
i.e. R(m,n) has no relator equivalent to a relator of the form a~'b;ab for all a € Ej, and
( 9 q J
be E,U). Then Zr(bj) = <b]>

(2a) Assume that Zr(a;) = {(a;) for some a; € {a1,...,am}. Then Nr({a;)) = {(a;).
(2b) Assume that Zr(bj) = (b;) for some b; € {b1,...,b,}. Then Nr({b;}) = (b;).
Proof. We prove (1b) and (2b), the proofs of (1a) and (2a) are similar.

(1b) Obviously, (b;) < Zr(b;). We have to show Zp(b;) < (b;). Let v = aM)...a®p1) ) ¢
Zp(bj) be in ab-normal form, k,! > 0. Then

a® . a®p® | pOp; = bia™ . a®pD O,

Assume first that £ > 1. The ab-normal form of vb; starts with a® .. .a® . Bringing also
bja(l) —.a®p® b to this normal form, we must have in a first step bja(l) = aWp for
some b € E,, i.e. p,(b;)(aV)) = aV) which is impossible by assumption, hence k = 0. This
means v = b .. b() and

b bW = bpD L pD),

By uniqueness of the ab-normal form of

)—1

by = b0 M M L pO

we have I =0 or b, ... b0 € {bj,bj_l} and hence v = b1 ... b0 € (b;).

(2b) Obviously, (b;) < Nr({b;)). We have to show Np((b;)) < (b;). Let v € Np({(b;}), then in
particular y~1b;y € (b;), i.e. b; is conjugate to a power of itself, hence by a result of Bridson
and Haefliger (see Proposition 17) we conclude v~ 1b;y € {b]-,bjfl}. If v~'b;y = bj, then
v € Zr(b;) = (b;) and we are done. So from now on let us suppose that v~ 1b;y = b;l (we
will see in the proof that this case is in fact not possible under the assumption Zr(b;) = (b;)),
then

Y7 = (T )y = v = (v ) T = (0 ) T = by,
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i.e. 2 € Zr(b;) = (bj) (which however does not directly imply v € (b;) in general). Let

y=a® a®pD) 0,

k,l > 0, be the ab-normal form of v. We assume first that & > 1, in particular v # 1. Then
v =aM . a®pM | pBOa) g RpM) | p) = b3 (1)

for some s € Z \ {0} (we know that s # 0, since I' is torsion-free and v # 1). Note that it
follows [ > 1, otherwise we would have the contradiction (a(!) ...a(®)? = bi. The expression
bW bWa™ . a® s in ba-normal form, let a® ...a®Wp™ . pD be its ab-normal form,
ie.

b WM a®) =gk g pD), (2)

Then, putting (2) into (1) gives

v =a® . a®™a® ampm) p0pM 1 =5 (3)
The right hand side b} of equation (3) is in ab-normal form, hence the a’s on the left hand
side have to cancel (i.e. alk) = a(k)il, e = a(l)il, because V) ...a® and a® ... M)
are freely reduced words in {(as,...,an)), so we have
OB YO B O RN (O R C ey A B AQ 4)
from equation (2) and
7?2 =W p0pM e = e (5)
from equation (3). Moreover, since bW bW and b® .. b0 are freely reduced words in
(b1,...,by), we conclude from equation (5) that s is even,
1 20 t
b o = bWt (6)
and
B B0 = ptpm M7 (7)

where t = s/2 and 0 < r < [ is the number of cancellations in b pOpM) pD | e,
bMp™M =1, pU="*tDp(") = 1. Note that |t| = [ —r > 1, in particular also the right hand
sides of (6) and (7) are in normal form. First, we assume r > 1. Putting (6) and (7) into
(4), we get

U bBEaD a®) = o7 T T T (8)

Since both sides of equation (8) are in normal form, we have (looking at the right ends)

—1
bjda(l) 0™ = w(a)bV 9)
and (looking at the left ends)
a® M TE = Wiy (a), (10)
where wy(a) and Wy (a) are freely reduced words of length & in (as,...,a.), and the sign of

b; in (9) and (10) is according to the sign of ¢, i.e. we have b;, if ¢ is positive, and b;l, if ¢
is negative. Now, equation (10) gives

__ —1
a .o = bflwk La)pM . (11)
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Putting (11) into (9) gives
b2 ()p " = w(a)p™® (12)

i.e. the contradiction bji2 = wi(a)wg(a) € {(a1,...,amn). Thus, we have to study the remain-
ing case r =0, i.e. [t| =1 =s|/2 and

vza(l)...a(k)bﬁ.
Then equation (4) or (8) is
¢t (1 k) _ (k)7L 1t
bja()...a()—a() .aM b, (13)

which is equivalent to
a® ™t a(l)_lbj = bz»a(l) e a(k)b]l_t. (14)

The equation v~ by = bj_1 is equivalent to

bj_ta(k)_1 . a(l)_lbja(l) . a(k)bé = bj_l. (15)
Putting (14) into (15) gives
—tyt (1) (k)pl—t (1) k)t _ p—1
by biat . .atVb; " et L at b = b; (16)
or equivalently
aV . a(k)b}”5 = b;lfta(k)i1 e a(l)il, (17)

which is a contradiction, since both sides of the equation are in normal form, but t = s/2 # 0
and hence |b}7t| =1—-t#]|-1-1t = |bj717t|. This means that the case k > 1 is
impossible. It remains to consider the case k = 0, i.e. v = b ... b® for some I > 0. But
then, v~ 1b;y = bj_1 gives a non-trivial relation in the free group (by,...,b,).

O
Remark. The assumptions of Proposition 8(1a),(1b) are not necessary as shown in Theorem 1(9).

We state now an adapted version of the crucial “normal subgroup theorem” due to Burger and
Mozes ([14], [15], [16]).

Proposition 9. (see [16, Chapter 4 and 5]) Let T be an irreducible (2m,2n)-group such that
Py, P, are 2-transitive, and Stabp, ({1}), Stabp, ({1}) are non-abelian simple groups. Then any
non-trivial normal subgroup of I' has finite index in T.

Proof. This is a combination of [16, Corollary 5.1], [16, Proposition 5.2] and [16, Corollary 5.3]. O

Remark. We will apply Proposition 9 to irreducible (2m, 2n)-groups such that
(Ph) P’U) S {(AQT)’H AQTL)7 (AQTFM MlQ)) (AQT)’L) ASL3(2))7 (M127 AQTL)7 (ASL3(2)) A2n)}’7
where m > 3, n > 3, My3 < Si2, ASL3(2) < Ss (cf. [15, Chapter 3.3]).

Some general notations for groups: The trivial group is usually denoted by 1. For a group
G and a subset S C G, let (S) be the subgroup of G generated by S and let (S)g be the
normal closure of S in G, i.e. the smallest normal subgroup of G containing S. We denote by
G the abelianization G/[G,G], by |G| the order of G, by Z(G) or ZG the center of G, and by
[91, 92] := glgggflggl the commutator of two elements g1,g92 € G. Both signs < and < do not
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exclude equality. Let ¢ € G and M < G a subgroup. Then, we denote by Zz(g) the centralizer
{h € G : hg = gh} and by Ng(M) the normalizer {h € G : hRMh~' = M}. A subgroup M < G is
called proper, if M # G. For a normal subgroup N <G, a quotient G/N is called proper if N # 1.
Let d(G) be the minimal number of generators of G (d(G) = oo, if G is not finitely generated).
Let G* be the direct product G x ... x G of k copies of G and G** the free product G ... G of
k copies of G

Let G be a permutation group, i.e. G < Sym(f2) for some non-empty set Q. For k € N, the
group G is said to be k-transitive if for every pair (w1,...,wg), (&1,...,&) of k-tuples of distinct
points in €, there exists an element g € G such that g(w1) = &1, ..., g(wk) = &k. Let G < Sym(Q)
be a transitive (i.e. l-transitive, according to the given definition) permutation group. A non-
empty subset A C Q is called a block for G, if for each g € G either g(A) = A or g(A)NA = 0.
We say that G is primitive if it has no non-trivial blocks on 2, i.e. no blocks except {2 itself and
the one-element subsets {w} of Q. Two permutation groups G < Sym({2) and H < Sym(€') are
called permutation isomorphic if there exists a bijection f : @ — Q' and a group isomorphism
1 : G — H such that the following diagram commutes for each g € G

Q

7.0
fl lf
Q ¥(9) o

Further notations: N = {1,2,...}, Ng = NU{0}. Sometimes, by abuse of notations, we write

!/

x instead of {z}.
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2 Irreducible (Ag, P,)-groups, P, primitive

In this section, we want to construct irreducible (4g, P,)-groups, where P, < Sa, is a primitive
permutation group. For practical reasons, we restrict to 3 < n < 7. This range covers 30 different
groups P, (up to isomorphism). See Table 1 for a short description of them and see [12] for a
list of all finite primitive permutation groups up to degree 50. A comprehensive introduction
to permutation groups, including the definitions of the groups in Table 1, is given in [24]. We
examine in more details four examples: (Ag, Ag)-group in Example 1, (4g, S5 < Sig)-group in
Example 3, (Ag, M12)-group in Example 6 and (Ag, ASL3(2))-group in Example 7. Two examples,
(A6, A5 < S19) and (Ag, M11 < Si2), could not be found with our methods up to now. A
construction of the remaining 24 examples is presented in Appendix A.1. We would like to justify
our choice P, = Ag. First, Proposition 1(1a) provides us with a necessary and sufficient condition
for irreducibility. Applying this, our examples in Section 2 and Appendix A.1 are irreducible, since
in all cases |P}§2)| =360 - 60°. The second reason is that we know H;: it is the “universal group”
U(Ag) < Aut(7s). This enables us to conclude in some cases (under strong assumptions on P,,
see Proposition 9), that I' has no non-trivial normal subgroups of infinite index. Being also of
independent interest, this result is a first step in the construction of finitely presented torsion-free
(virtually) simple groups. Each example will be given in terms of the set of relators (geometric
squares) R(m,n). This uniquely determines the group

I'={a1,...,am,b1,...,b, | R(m,n)),

as well as the complex X, which is the standard 2-dimensional cell complex associated with I". In
particular, X is a (2m, 2n)-complex such that 71 (X, z) =T, where x is as usual the single vertex
of X. In all our examples, we use the same names for the appearing groups and spaces: I', X,
Ty, P, P,, Hi, Ho, ..., as introduced in Section 1. This should not lead to confusion, since they
always refer to the last defined example.

2.1 (Ag, Ag)-group

Example 1.
aibia 1b 1 aibaa 1b 1 aibzasb 1
10104 1 10204 3 1034209

R(3,3) =1 aibylaz'bs, asbiaz'by', asbeas by,

a2b3a3_1b1, a2b§1a3b2, a2b1_1a3_1b1_1
Theorem 1. (1) P, = A4g, P, = As.
(2) Any non-trivial normal subgroup of T has finite indez.

(3) T can be decomposed in two different ways as an amalgamated free product of finitely gener-
ated free groups I' = F3 xp,, Fy. The same holds for its subgroup I'o = Fy xp,, F5.

(5) The second bounded cohomology of T' with R-coefficients vanishes, i.e. HZ(I;R) = 0 (cf.
Theorem 3(3)).

(6) [I',T] =Ty and I is perfect.

(7) (cf [16, Theorem 6.3] where m > 15, n > 19) For every m > 7 and n > 7, there exists a
torsion-free cocompact lattice A < U(Aay, ) X U(Asa,,) with dense projections. Any non-trivial
normal subgroup N <1 A is of finite index in A.
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Q
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PSL;(5) 6 2 60 Y
PGL,(5) | 6 3] 120 N
Ag 6 4] 360 Y
Se 6 6| 720 N
AGL,(8) | 8 2 56 Y
ATL;(8) | 8 2| 168 Y
PSLy(7) 8 2 168 Y
PGLy(7) | 8 3] 336 N
ASLs(2) 8 3] 1344 Y
Ag 8 6 | 20160 Y
Ss 8 8 | 40320 N
As 10 1 60 Y
Ss 10 1| 120 N
PSL,(9) | 10 2 [ 360 Y
Se 10 2| 720 N
PGLy(9) | 10 3] 720 N
Mo 10 3] 720 Y
PT'Ly(9) | 10 3 1440 N
Asg 10 8| 101/2 Y
S10 10| 10| 100 N
PSLy(11) | 12 2] 660 Y
PGLy(11) | 12 1320 N
My, 12 7920 Y
M, 12 5 | 95040 Y
Ay, 12| 10 121/2 Y
S1a 12 12 12! N
PSL,(13) | 14 2 [ 1092 Y
PGLy(13) | 14 2184 N
Ay 14| 12 141/2 Y
Sia 14 14| 14 N

Table 1: Primitive subgroups of Sa,, 3 <n < 7. t(G): transitivity of G.

(8) Aut(X) = Zs.
(9) Zr(ai) = Nr({ai)) = (ai), if ai € {az,a3}. Zr(b;) = Nro((b;)) = (bj), if b; € {ba, b3}
(10) T is not linear over any field.

Proof. (1) We only list the generators of P, and P,. It can easily be checked for example with
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(2)

GAP ([28]), that these permutations indeed generate Ag.

p”(bl) = (2’3)(475>a
pu(b2) = (1,5,4,2,3),
pv(b3) = (2,3,5,4,6), generating P, = As.

ph(al) = (2a 3)(47 5);
ph(a2) = (1a 6,3, 2)(47 5);
pr(az) = (1,4,5,6)(2,3), generating P, = Ag.

We apply Proposition 9 or [16, Corollary 5.3], using the fact that P, and P, are 2-transitive,
Stabp, ({1}) = ((2,3)(4,5), (2,3,5,4,6)) = A5, Stabp, ({1}) = ((2,3)(4,5), (2,4,5), (4,5,6)) =
As are non-abelian simple groups and that I' is irreducible.

See [69, Theorem 1.1.18]. Explicit (i.e. describing the injections) decompositions of T' and
T’y are given in Appendix A.2.

By [15, Proposition 3.1.2], QZ(H;) = 1 for ¢ = 1,2, hence pry_, is injective showing I' &
pr;(T"). H; is by [15, Proposition 3.3.1] isomorphic to the “universal group” U(Ag), which
is not torsion-free, thus pr;(I") # H;. For a definition and some properties of the universal
group, see [15, Chapter 3.2] or [16, Chapter 5].

We have noticed in the proof of (4) that H; = U(4g), i = 1,2. Hence, by [15, Chapter 3],
H, and Hs act transitively on the boundary at infinity 0.7 of their corresponding trees
Tom = Ts and Tz, = T respectively. Now, statement (5) follows from [13, Corollary 26]. As
pointed out there, this result has some applications to I'-actions on the circle St (see [13,
Corollary 22]).

These are easy computations using GAP ([28]). To see by hand that 'y is perfect, one
first computes a presentation of I'y by the Reidemeister-Schreier method and then adds
commutators to the relators to simplify the presentation.

We follow the proof of [16, Theorem 6.3], but replace the (PSL3(13),PSLy(17))-complex
Ox = Aj3 17 used there (see also Example 40) by our (Ag, Ag)-complex X. An illustration
of this construction is given in Appendix A.3 for the smallest values m =7, n=7.

An automorphism of X is a a graph automorphism of the 1-skeleton X ) which induces a
permutation on the set of geometric squares of X. Checking all 266! = 46080 candidates
(using the program of Appendix D.7), we have found exactly one non-trivial automorphism
(fixing seven of nine geometric squares) given by
ap — afl

as — Qg !
as v+ ag !
by — bfl
by — b3
bs — bs.

The two non-trivially permuted geometric squares of X are agbiaz 'by ' and asbszaz 'by.
Note that this automorphism gives a non-trivial element in the group of outer automor-
phisms Out(I') = Aut(T")/Inn(T"), since it has order 2 and Inn(T") = T is torsion-free (the
isomorphism Inn(T") 2 T holds because ZT"' = 1 by Corollary 7(3)).
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(9) Zr(az) = Nr((az)) = (az), Zr(as) = Nr((as)) = (a3), Nr((b2)) = (b2) and Nr((bs)) = (bs)
follow from Proposition 8. We prove Zr(b3) = (bs). Similarly, one can prove Zr(bs) = (be).

Let v = a® ...a®pM . b € Zp(bs) be in ab-normal form, k,1 > 0. Then
a® . a®pW b Opg = bga™ . a®pD) | pD),

Assume first that k =1, i.e.
aMpM . pWhy = byaWp™ b0,

The ab-normal form of aMb™M) .. pMps starts with a("). Bringing also b3aMp™M ... b® to
this normal form, we must have in a first step bsa® = aVb for some b € E,. Checking all
elements in R(3,3), the only possibility is a(!) = a1, b = by, hence

arb® . bWby = arbpd™ .. b0
or
b b Dbs = bbb,
But this gives a non-trivial relation in the free group (b, be, b3).

Assume now that &k > 2. As in the case k = 1, we conclude a) = q; and bzaV) = a(l)bg,
i.e.
ara® .. a®pD | pWps = a1ba@ . aPpD O

hence
a® . a®pm b(l)bg = bga(Q) a®p®

The ab-normal form of the left hand side of this equation starts with a(?). Bringing the right
hand side to this normal form, we must have bya® = )b for some b € E,. Here, the
only possibility is a(® = afl, b = bs, but this contradicts the fact that aMa® ... a) =
ara;t. .. a® is freely reduced.

.al

It follows that & = 0, and we conclude v € (bs) exactly as in the proof of Proposition 8(1b).

(10) It follows from Proposition 38 in Section 4.9.
O

Conjecture 1. The finitely presented torsion-free group Iy is simple.
A possible proof of Conjecture 1 could use the following easy lemmas:

Lemma 10. Let G be a group and H < G a subgroup of finite index. Then there is a group
N < H such that N <G and |G : N] < [G: H]! < o0, in particular

ﬂ M = ﬂ L.
foi. foi.

M<G LG

Proof. (Probably due to Marshall Hall Jr. ([30])) Let k be the index [G : H] and write G as a

disjoint union of right cosets
k

i=1
Right multiplication Hg; — Hg;g induces a homomorphism ¢ : G — S such that N := ker¢ < H
and [G : N| < |Sx| =[G : H]! < co. Note that

N = ﬂ gHg™ .
geG
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Lemma 11. Let G be a group and H < G a normal subgroup of finite index. Assume that there
is an element h € H such that (h*))¢ > H for each k € N. Then every proper normal subgroup
of H has infinite index.

Proof. Let N <« H be a normal subgroup of finite index. By Lemma 10, there is a group M < N
such that M < G and [G : M] < co. Looking at cosets of the form h¥M, k € N, we see that at
least two of them are equal, in particular h* € M for an i € N, thus (h'))c < M. By assumption,
we have H < (h')), hence H < M and M = N = H. O

Lemma 12. Let G be a group and let H, M be two subgroups of G such that [G : M| < co. Then
[H: ( MNH)<I[G: M]< 0.

Proof. Let k :=[G : M| and write

k
i=1
Then, intersecting with H, we get
k
H=GnH=||(Mg;nH).
i=1
Fixi e {1,...,k}. If Mg; N H # (), take any element mg; = h € Mg; N H. Then Mg; N H =
Mmg;NH =MhNH=MhNHh=(MnNH)h and we are done. O

Lemma 13. Let G be a group and H < G a subgroup of finite index. Then
(NI N=[) N
NGH N4a
In particular, H is residually finite if and only if G is residually finite.

Proof.
A N=[) M=) M=]N,
NG H MZH MZa NYa
where the first and third equalities follow from Lemma 10. The inclusion “D” in the second
equality is obvious, whereas “C” in the second equality directly follows from Lemma 12. O

Proposition 14. Let I" be a (2m,2n)-group such that any non-trivial normal subgroup of T' has
finite index. Let H << be a non-trivial normal subgroup of I' and assume that there is an element
h € H such that (h*)r > H for each k € N. Then H is a finitely presented torsion-free simple
group.

Proof. First note that by assumption H has finite index in I". By Lemma 11

H= (| N

£
N<JH

H= () N

f.i.
NT

and hence by Lemma 13

In particular, T' is non-residually finite and [16, Corollary 5.4] shows that H is simple. It is
obvious that H is finitely presented and torsion-free, since it is a finite index subgroup of the
finitely presented torsion-free group I'. o
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Corollary 15. Let I' be as in Fxample 1. Assume that there is an element vg € Ty such that
{(vEWr =Ty for each k € N. Then Ty is a finitely presented torsion-free simple group.

Proof. This follows directly from Proposition 14 using Theorem 1(2). O

One step towards the proof of Conjecture 1 (or an application of Corollary 15) could be the
following proposition, whose detailed proof is given in Appendix A.4:

Proposition 16. For I' as defined in Example 1, we have ((a?(1+2k)>>p =Ty for each k € Ny.

Remark. A calculation with MAGNUS ([49]) shows, that moreover {(a}?))r = (@?*)r = I'g. See
Table 2 for the orders of some quotients of I'; illustrating that Conjecture 1 could be reasonable.

[0/ [k=1]2]3]4[5]6]7]8[o]10]11]12]
w=a; 2Ja2]4a2]a]2]4a]2] 4] 2] 4

a 2 42|42 |a]2]4a|2] 4] 2| 4

a pla|2|a2fal2]4a2| 4| 2] 4

by 2424|2424 |2] 4] 2| 4

by pla|2|a2fal2]a2| 4| 2] 4

bs 2424|2424 |2] 4] 2| 4

Table 2: Order of I'/{(w*)r, w € {a1, as,as,b1,be,b3}, k=1,...,12, in Example 1

In order to prove that I'g has no proper finite index subgroups, it could be useful to have a
non-trivial element v € I' such that for example v and 72 are conjugate. But this is not possible
by the following proposition which is a special case of a result of Bridson and Haefliger ([8]):

Proposition 17. Let T' be a (2m,2n)-group and v € T a non-trivial element. Then v* can only
be conjugate to v if |k| = |I|.

Proof. Assume that v¥ and ! are conjugate for some k,l € Z . Then by [8, Proposition I1.6.2(2)],
v* and 4! have the same translation length, and by [8, Theorem I1.6.8(1)] we have |k| = ||, using
the fact that v acts as a hyperbolic isometry on the CAT(0)-space Tz, X Tap. O

The observation that I'y has no subgroups of small index is reflected by the next proposition.
We first give a lemma used in the proof of Proposition 19:

Lemma 18. Let w € Ty be a (reduced) word of length 2, 4 or 6. Then {(w)r, = To.
Proof. We have used GAP ([28]). There are 84960 different elements to check. O

Recall that we denote by d(G) the minimal number of elements needed to generate the group
G and by G the direct product of k copies of G.

Proposition 19. d(I'}) < 3, if k < 1230.

Proof. (Adapted from [68, Proof of Theorem 4.2]) There are 60 elements in I'g of length 2 and
2400 elements of length 4. Since w # w~! and |w| = |w™}!| for any non-trivial element w € T,
we can choose a subset S = {71,...,71230} C I'g satisfying |S| = 1230, SN S~! =0, |y;| = 2 for
i=1,...,30 and |y;| = 4 for i = 31,...,1230. It follows that |%-1'yi_21| € {2,4,6} whenever v;,, Vi,
are different elements of S. Applying Lemma 18, we see that ((vi,7;, ", = ['y. Note that T
is generated by two elements, for example by {a?, bgbfl}. For each k£ < 1230, we want to show
that I'} is generated by the element (71, ...,v:) and the diagonal subgroup (which is for example
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generated by the two diagonal elements (a?,...,a?) and (boby ', ..., boby ") in T'). For k = 1,
this is obviously true. We assume that 2 < k < 1230 is fixed and that T’ g_l is generated by the
diagonal subgroup and (v1,...,7%k—1). Let H be the subgroup of Ik generated by the diagonal
subgroup and (71, ...,7x). Our goal is to show that H = T'k. If we think F’gfl embedded in
I'k as a subgroup F’gfl x {1} < I‘gil x Tg = 'k, then for any v € T'y the group H contains by
assumption k — 1 elements of the form

(7’17"'717*)’ M ’(17"'7177’*)7

where * are certain elements in I'g we do not have to care about. By construction, H contains
also the element

(v e 1 D) = () (-
Computing the commutators

[(7’ 1,...,1, *)a (717];17 cee 771971'7];17 1)]7 7[(1a ce Ly, *)7 ('7171;17 e a’)’kflf)/];la 1)]7

we see that H contains the elements

([7)717]:1]7 1) LR 1)) <o 7(15 LR 1) [,Ya’yk‘—l’Yk_l]a 1)

Let now NN be the subgroup of T'g

N := <[’77’)’17]¢_1]; ) [%’kal’)’k_l] Y S F0> < FO~

Then N is a normal subgroup of I'y, since for each g € I'pand j=1,...,k—1

gl ot = Lo 'l Lo v ' €N

Note that by definition of NV
{fylfyk_lN, .. ,fyk,lfyk_lN} C Z(Ty/N).

Since (v;v; Hro = Lo, we have (7,7, 'N)ry,n = I'o/N and Z(I'g/N) = I'g/N, ie. I'\/N is
abelian. But then N = T'y, because I'y is perfect. In particular, Iy is generated by the elements
(Vs ViV 1] and H contains therefore the j-th direct factor of T'}. Since

(15"'3157):(77"-77)'(7_1517-"71)""'(15""157_171)5

H also contains the k-th direct factor of I'f, therefore H = T% and 'k is generated by three
elements. 0O

In most of our main examples (e.g. Example 1, 3, 6, 7, 8, 9, 10, 11, 14, 15 and 18) of Section
2 and Section 3 we always have [I',T'] = 'y, where in addition 'y is perfect. The next example is
different in this regard (see also Appendix C.4).

Example 2.
alblaflbgl, albgaglbl, a1b3a;1b3,
R(3, 3) = albglagbfl, a2b1a§1b3—1, a2b2a3_1b3,
—1 -1 -1
azbzas b, azbs “asz b1, asbiasbs

Theorem 2. (1) The statements of Theorem 1 (1)-(5) also hold for T.
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(2) [I,T] is not perfect, of index 32 in T and Ty is not perfect neither.

Proof. (1) We use the same arguments as before, of course with different generators of P, and
P,:

p'u(bl) = (1755473,2)7
pv(b2> = (27 6’ 574’ 3)7
pv(b3> - (273)(4a 5)7

pn(ar) = (1,5,6,2)(3,4),
ph(a2> = (175a3)(276a4)7
ph(a3> = (173a 5)(274a6)

(2) It is easy to check that [[',T'] is the kernel of the surjective homomorphism given by

I' — 72 x Zg
ay — (1,0,0)
as — (1,0,6)
as — (0,0,1)
by (0,1,3)
by + (0,1,3)
bs — (1,1,0).

Note that the commutator subgroup of [[', I'] has index 6 in [I, T'] and that (a2 )r is a perfect

normal subgroup of I' of index 192. See Table 3 for the orders of some other quotients.
Moreover, [I'g, T'¢] has index 64 in T', more precisely I'¢® = Z 5.

[T/ [ k=1 2] 3] 4] 5] 6] 7] 8] 9] 10[11] 12]

w = ay 48 | 192 | 48 | 192 | 48 | 192 | 48 | 192 | 48 | 192 | 48 | 192
a2 8| 16|24 | 32| 8| 48| 8| 64|24 | 16| 8| 96
as 41 24| 4| 48| 4| 24| 4| 96| 4| 24| 4| 48
b1 4 8112 | 16| 4| 24| 4| 32| 12 8| 4| 48
by 4 8112 | 16| 4| 24| 4| 32| 12 8| 4| 48
bs 16| 96 |16 | 192 | 16 | 96 | 16 | 192 | 16 | 96 | 16 | 192

Table 3: Order of I'/({(w*)r, w € {ai1, as,as,b1,bs, b3}, k=1,...,12, in Example 2

Conjecture 2. T' is non-residually finite and
M N =[0I 01 = (@), ke .
N

Question 1. Let T be a (2m,2n)-group such that any non-trivial normal subgroup of T' has finite
index. Assume that A QT is a perfect normal subgroup (of finite index). Is A simple?
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2.2

Example 3.

Theorem 3.

(Ag, P,)-group, P, primitive, not 2-transitive

R(3,5):

(1) Py = As; P,

—1;-1 —1;-1 -1
arbia; by, arbaas by, aijbsay by,
—1;-1 -1 —1 —1;-1
a1b4a2 b5 s a1b5a2 b5, a1b5 (22} b4 5
—1_ -1 -1 -1 -1
a1by “axby ", a1bs ay b3, aiby agba,

—1 —1
asbiag "ba,  azbaaz b1,  asbiasby,

—1;-1 -1 —1
a3b3a3 b3 y a3b4a3b4 y a3b5a3 b5

» =2 S5 < Sig is primitive, not 2-transitive.

(2) There are two amalgam decompositions of T':

Fs xpyg F13 =1 = F3 xp,, F1y.

There is a vertical decomposition of T'g

To & Fy xp,g Fy,

acting locally like Ag (but possibly not effectively) on Tg, and a horizontal decomposition

'y & Fj *Fyy F5 < Aut(Tw),

where the (effective) action on Tyg is locally like S5 < Sio, in particular locally primitive,

but not locally 2-transitive.

T is SQ-universal, in particular not virtually simple.

[T

T is not linear over any field.

(1)

=T and 'y is perfect.

polbr) = (1,5,4,3,2),
po(b2) = (2,6,5,4,3),
polbs) = (1,2)(5,6),
pu(bs) = (1,2,6,5)(3, 4),
polbs) = (1,2)(5,6),

pw(ar) =(1,7,9,10,3,2)(4,6,5
polaz) = (1,8,9)(2,4,10)(5,6, )
pﬂ(a3) = (179)(2a 10)( ) )

The action of P,SQ) on S(z,,2) has two orbits of size 60 and 30 respectively. Observe that
in general the action of P,SQ) on S(x,,2) is transitive if and only if P, is a 2-transitive
permutation group. Note that P, acts like S5 on the set of 2-subsets of {1,2,3,4,5}.
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(2) Again, use [69, Theorem I1.18]. The explicit horizontal decomposition of I’y can be found
in Appendix A.5.

(3) Observe that in the horizontal decomposition I' & F3 xp,, F11 we have |Fa1\F5/F»1| = 3 (for
a computation of this expression, see Proposition 22) and |Fi1/F»1| = 2. Now apply [27,
Theorem 1.1] which states that HZ(A *c B;R) is an infinite dimensional R-vector space if
|C\A/C| > 3 and |B/C| > 2. Note that the assumptions of this theorem are not fulfilled
in the two (F3 *p,, Fr)-decompositions of Example 1, since |Fi3\F3/Fi3] = 2 due to the
2-transitivity of P, and P, in Example 1.

(4) Recall that a countable group G is called SQ-universal, if every countable group can be
embedded in a quotient of G. By a result of Ilya Rips, mentioned in [2, Chapter 9.15], an
amalgam A ¢ B is SQ-universal provided that C' # B and |C\A/C| > 3. We apply this
to I' 2 F3 xp,, F11. Note that I' does not satisfy the assumptions of the normal subgroup
theorem [16, Theorem 4.1], since Hs is not locally 2-transitive and hence not locally oco-
transitive.

(5) This is a short computation.

(6) It follows from Proposition 38 in Section 4.9.
o

Proposition 20. Let I’ be as in Ezample 3. Then (a¥)r = Ty for k € {2+ 61,4+ 61}, | € Np.
Moreover, (af)r = (i?)r = (al®)r = To.

Proof. For the first part, we only give the idea of the proof, which is essentially the same as in the
proof of Proposition 16. First show that {(bsbs))r = I'g and (bZ)r = [y, then show that for I € Ny

babs, k=246l

—kp—1p  kp—1
ay " (by "bgaibs "bs) =
{0 ity ) {@, k=4+6l.

We have checked the second part with MAGNUS ([49]). O

Conjecture 3. The group I' of Example 3 is non-residually finite. More precisely
(] N =To.
N4r

See Table 4 for the orders of some quotients (it looks like Table 2).

[[o/quyr[ [e=1]2]3]a[5]6]7[8]9[10]11]12]
w=a 2la]2]42[a]2]4]2] 4] 2] 4
a 2 (a2 fa|2[a]2[al2] 4| 2| 4
a 24242 (a]2[a]2] 4| 2| 4
by 242424242 4| 2] 4
b 2 (a2 fa|2[a]2[al2] 4| 2| 4
bs 24242 |al2]4a|2| 4| 2] 4
b 2 (a2 fa|2[a]2[al2] 4| 2| 4
bs 24242 |al2]4a|2| 4| 2] 4

Table 4: Order of I'/{(w*)r, w € {ay, az,as,b1,...,bs}, k=1,...,12, in Example 3
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Remark. We construct in Example 18 a (10, 10)-group I" such that the corresponding subgroup

ﬂ N =T,.

£
NI

I’y is not simple and

However, in Example 18, P, is transitive but not primitive.
Conjecture 4. Every orbit of the Ha(x,)-action on 0xT1¢ is uncountable.

“Proof”. Studying the orbits of the local action of Hs on finite spheres S(z,, k), we believe that
the orbit of any boundary point w € 9x.710 under the Hj(x,)-action contains the uncountable
boundary at infinity 0uc710;4,7 of a certain infinite subtree 779,47 C 719. This subtree contains
S(zy,1) and the degree of a vertex y, # x, is either 4 or 7 (depending on w), but constant on
finite spheres S(x,, k).

More precisely, we fix as usual a vertex x, € 7Tjp and imagine paths (without backtracking)
in 770 originating at x, to be labelled by (reduced) words in (b1,...,b5). Using the explicit
isomorphism E, 2 {1,...,10} described in Section 1, we identify the sphere S(z,, k) with the set
of k-tuples

{(e1,...yen) €{1,..., 10} e + ey #11, Vie {1,...,k—1}}.

For each k > 2, we define an equivalence relation ~j on S(z,,k) as follows. First, ~o gives a
partition of S(z,,2) into two equivalence classes consisting of 30 and 60 elements respectively.
The equivalence class with 30 elements is {(1,3), (1,5), (1,9), (2,6), (2,7), (2,10), (3,4), (3,5),
(3,6), (4,1), (4,4), (4,9), (5,2), (5,8), (5,9), (6,1), (6,8), (6,10), (7.3), (7,7), (7,8), (8,2), (8,4),
(8,10), (9,1), (9,3), (9,6), (10,2), (10,5), (10,7)}. For k > 3 we define

(61,...,6k) ~ (fl;---afk) <= (ei,eH_l) ~9 (fi;f'i-i—l) Vi € {1,...,](1 — 1}.

Note that we have 25~ equivalence classes on S (24, k) with respect to ~j, where the number
of elements in each class is 10 - 67 - 3*7177 for a j € {0,...,k — 1}. We have checked that the
Hj(z,)-action induces exactly ~j on S(x,, k) for k = 2,3, 4. O

As a “corollary” of Conjecture 4, we have
Conjecture 5. QZ(H>) = 1.

“Proof”. If Conjecture 4 holds, then we follow verbatim the proof of [15, Proposition 3.1.2, 1)]:
Let S C 0x0T10 be the set of fixed points of hyperbolic elements in QZ(Hz). Then S is countable,
since QZ(H3) is countable, which follows directly from the fact that QZ(H2) is discrete (see
[15, Proposition 1.2.1, 2)]). Moreover, S is Hp-invariant, since QZ(Hz) is a normal subgroup of
H;. We conclude by Conjecture 4 that S is empty, in other words QZ(H>) has no hyperbolic
elements. On the other hand, QZ(H2) acts by [15, Proposition 1.2.1, 2)] freely on the vertices of
710 (in particular, there are no elliptic elements in QZ(Hz) \ {1}), hence |QZ(Hz)| < 2. But then,
QZ(H>) C Z(Hy) = 1. O

See the following table to check that small powers of by,...,bs are not in Ay < QZ(Hz2) (see
also Appendix A.6 for all words w of length 2). For instance, it follows that b} ¢ Ao if 1 < j < 3000
by the following Lemma.

Lemma 21. LetT = (a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group and letb € (b1, ..., by)
such that b7 € Ay for some j € N. Then |p,(Jk) (b)| < j for each k € N.
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Proof. Fix any k € N. Using the identification

Ay = ﬂ kerpsjk)
keN

we get ‘
; _
(pSﬁ>(b>) = P07 = 1g )

hence |p7(jk) )] < 7. O

PP | k=1] 2| 3| 4 5

w = by 5 | 10 | 100 | 600 | 3000
ba 5 | 10 | 100 | 600 | 3000
b3 2 (10| 50 | 100 | 1000
4
2

ba 8 | 40| 200 | 1000
bs 41 20| 40 | 1200

Compare this to the table below, where we already know that QZ(H;) =1 (by [15, Proposition
3.1.2, 1))).

(k)

pp (W) || E=1| 2| 3 4
w=a 6 |12 | 72| 432
as 31 6 (12| 72

as 2] 4| 8 16

Conjecture 5 implies another conjecture:

Conjecture 6. Let N <T' be a non-trivial normal subgroup of infinite index. Then T'/N is an
infinite group having property (T) of Kazhdan.

“Proof”. We know that QZ(H;) = 1 (see [15, Proposition 3.1.2, 1)]) and assume that QZ(Hz) =1
(see Conjecture 5). For 1 # N<I" and ¢ = 1,2, we have 1 # pr,;(N)<1H;. By [15, Proposition 1.2.1]
H;/pr;(N) is compact. We can apply [16, Proposition 3.1] to conclude that I'/N has property
(T). Note that there are uncountably many non-isomorphic infinite quotients I'/N | since I" is SQ-
universal (see [56], the proof is based on the fact that there are uncountably many non-isomorphic
finitely generated groups, but each quotient I'/N, being countable, has only countably many
finitely generated subgroups). o

2.2.1 Double cosets

Proposition 22. Let T’ be a (2m,2n)-group. Suppose that Py, < Sap, is transitive. Then there is
a bijection between the set of orbits of the diagonal action of Pp, on {1,...,2m} x{1,...,2m} and
the set F1_omtomn \Fn/F1—om+2mn = {F1—2m+2mnf Fi—2m+2mn | f € Fn} of double cosets, where

I'=F, *F1_2m+42mn Fl*ermn

is the vertical decomposition given by Proposition 2(1a). In particular, |F1—om+2mn \Fn/F1—2m+2mn|
is the rank of Py (in the terminology of [24, p.67]) and can be easily computed without explicitly
knowing the explicit amalgam decomposition, for example using the GAP-command

1 + Size(OrbitLengths (Ph, Arrangements([1..2+*m],2),0nTuples));
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Another consequence is that

|F172m+2mn\Fn/F172m+2mn| == 2;

if and only if Py is a 2-transitive permutation group. (As always, similar statements can be made
for P,.)

Proof. We define B := F,, C := Fi_gmiamn- Let 75, be the Bass-Serre tree on which the
amalgam I' & B #¢ F)_;4mn naturally acts and let xp be the vertex of 73, such that B =
Stabr(xp). Denote by Q the set of edges in 73, originating from z) and let w € Q be the edge
such that Stabr(w) = C. Note that |Q] = [B : C] = [F,, : Fi—om+2mn] = 2m. By construction,
the action of P, on {1,...,2m} & E), is equivalent (permutation isomorphic) to the action of B
on (2. We want to define a bijection

¢ : {Orbits of B ~ Q x Q} — C\B/C.

Let (w1,w2) € 2 x Q. We denote by [(w1,ws)] its B-orbit under the diagonal action, in particular
[(w1,w2)] = [(bw1, bws)] for each b € B. Since B acts transitively on €, we can choose by,bs € B
such that w = bjw; = baws. Now we define

¢ ([(w1,w2)]) == Cb1b; ' C € C\B/C.

We first show that ¢ is independent of the choice of by, bs. Take l~)1, 52 € B such that w = l~>1w1 =
ngg. Then bigflw = bw; = w, (i = 1,2), hence bi?);l e C,ie. Cby = C’?)l and b;lC’ = 5510
which implies Cb1b; 'C = Cb1by'C. Next we show that ¢ is independent of the representative
of [(w1,w2)]. Any representative of [(w1,ws)] has the form (bwi,bws) for some b € B. But then
w = b1b 1 (bwy) = bab~ ! (bws) and

© ([(bwy, bws)]) = Cbib~ L (beb™1)"1C = Cbyby ' C.

This proves that ¢ is well-defined.
Note that ¢([(w,bw)]) = CbC for each b € B, hence ¢ is surjective.
To show the injectivity of ¢, assume that

¢ ([(w1,w2)]) = Chyby 'C = Chyby 'C = o ([(@1,@2)])

such that w = bywy = bows = l~>1[u1 = 52&2. The assumption CblbglC = 0515510 implies that
there is some ¢ € C such that

chiby ' € biby O,

l;gél_lcblbg_l € C,

boby tebiby tw = w,

cblbglw = bll;;lw,

hence
(w1, w2)] = [(w, baby )] = [(cw, ebiby )] = [(w, biby w)] = [(@1,@2))-
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2.2.2 Blocking pairs

One method to prove the SQ-universality of an amalgamated free product is a criterion of Paul
Schupp ([63]) using the notion of a blocking pair.

Definition. (see [63]) Let C' < A be groups. A pair {z1,z2} of distinct elements in A\ C is called
a blocking pair for C < A if

i) 22 ¢ O\ {1}, foralli,j =1,2;¢,6 = 1.
ii) zfexd ¢ C,if ce C\{1};4,j=1,2;¢,0 = £1.

Proposition 23. (1) (see [63]) If there is a blocking pair for C < A or a blocking pair for
C < B, then the amalgam A xc B is SQ-universal.

(2) If there is a blocking pair for C < A, then |C\A/C| > 3.

(3) Let T be a (2m,2n)-group. Suppose that Py < Sap, is transitive. Then there is no blocking
pair for C < B and no blocking pair for C < A, where

B *C A = Fn *F1—2m+2mn Fl—m+mn =~ F
is the vertical decomposition given by Proposition 2(1a).
Proof. (1) See [63] (using small cancellation theory).

(2) Let {z1, 22} be a blocking pair for C' < A. Obviously, we have Cz1C # C # Cx2C. Assume
that Cx1C = CxoC, thus there exist ¢1,co € C such that x1 = c1xacs. If ¢4 = 1 = ¢o, then
T1 = T2, a contradiction. If ¢; # 1, then xflclacg = cgl € C, a contradiction. If ¢ # 1,
then IQCQII_I = cl_1 € C, again a contradiction to the blocking pair assumption.

(3) By (2), there is no blocking pair for C < A, since |[C\A/C| < |A/C| = 2 < 3. Let x;
be in a blocking pair for C < B. Let b # 1 be in ker(p, : (b1,...,bn) — Pp). Since
[B : C] = 2m < oo, there is an integer & € N such that b* € C. Let ¢ := b, then
¢ € kerp, \ {1} fixes the 1-sphere around the vertex “B” in the corresponding Bass-Serre
tree (see Figure 5), in particular ¢ fixes the edge “Cx;”, hence Cxic = Cxy, but then

Al’l

CZL‘l

B

Figure 5: Illustration in the proof of Proposition 23(3)

:clcacl_l € C is a contradiction to the assumption that z; is in a blocking pair for C' < B.
O

2.2.3 A homomorphism due to Bernhard H. Neumann

Proposition 24. (¢f. [55]) Let A, B, C be groups, ia : C — A and ip : C — B injective
homomorphisms and assume that A # 1. Via the identifications C = i4(C), C = ig(C), we think
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of C as a subgroup of A and B, and we write as usual A xc B to denote the amalgamated free

product
(A% B |ialc) = inlc), c € C).

Then there is a surjective homomorphism
p:Axc B— P < Sym(A x B),

such that P # 1. In particular, if p is not injective, we get a non-trivial proper quotient P =
(Ax¢c B)/kerp of Axc B (if p is injective, then P = A xc B).

Proof. (cf. [55]) We fix right coset representatives Sa = {a; := 1,as2,as,...}, Sp = {b1 =
1,b2,b3,...} of C in A and B respectively, i.e. A = U;Ca;, B = U;Cb;. We will define two
homomorphisms p4 : A — Sym(A x B) and pp : B — Sym(A x B) as follows. Let (z,y) € Ax B,
then pa(a)(x,y) := (ax,y). Obviously, pa is a homomorphism:

palad)(z,y) = (adz,y) = pa(a)(az,y) = pala)pa(a)(z,y).
To define pp(b)(x,y), note that with respect to the chosen (fixed) right coset representatives, we
have unique decompositions

T = Culy, Y = Cyby, begby = b, (cy, ¢y, € C,ay € Sa, by,b, € Sp).

Now we define pp(b)(z,y) := (czas,cyb.). We check that pp is a homomorphism:

pB(0b)(x,y) = (craz; cybr),

where bi)cmby = ¢;by is the unique decomposition (¢; € C, by € Sp).

pE(0)(2,y) = (craz, cyby),

where Bcl.by = ¢;b, is the unique decomposition (¢, € C, b, € Sp). Hence,

pB(0)p50)(2,) = pB(0)(cras, cybr) = (craz, ¢,br) = pp(bb) (z, y),

since be,.b, = bl;cmby = ¢iby.
Let ¢ € C, then

pi(e)(,y) = (cezag, cyby) = (cx,y) = palc)(z,y),

in other words, pa oiq = pp oip. By the universal property of A x¢ B, the desired homomor-
phism p : Axc B — P exists (see the following diagram), where P < Sym(A x B) is gener-
ated by {pa(A),pp(B)} C Sym(A4 x B). Obviously, P # 1, since A # 1 (by assumption) and

pa(a)(1a,1p) = (a,1p).
C B
iAl l
A

_—
—>A*03

iB

O

Question 2. Let I' be as defined in Example 3. Is there an amalgam decomposition A xc B of T’
(or Tg) such that p is not injective?
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2.2.4 A result of Roger C. Lyndon

Perhaps useful in the construction of infinite quotients of amalgamated free products could be the
following proposition of Roger C. Lyndon:

Proposition 25. (see [46, Proposition 1.3]) Let G = A x¢c B be an amalgamated free product.
Let Na <A, Np < B be normal subgroups such that Na NC = NgNC. Then

G/NgA/NA *C/Nc B/JVB7
where No := NaNC =NpNC and N := (NsUNg)¢.

Proof. See [46] or [21]. O

2.2.5 Embedding in (49, A12)-group

We now embed our (4g, S5 < Sip)-group I' of Example 3 in a (Ajg, A12)-group. This group
will satisfy the assumptions of the normal subgroup theorem ([16, Theorem 4.1] or Proposition
9). If Conjecture 3 is true, then also the (Ajg, A12)-group is non-residually finite and by [16,
Corollary 5.4] virtually simple. We mention that the same ideas will indeed lead in Section 3 to
the construction of virtually simple (A4g, A16)-, (A4s, A14)-, (ASL3(2)), A14)- and (A10, A1p)-groups!

Example 4.
—17-1 —17-1 -1 —13-1 -1
arbiay; by 7, arbaay by, aibsay by, airbsay by, aibsas bs,
-1 -1, -1 -1 _—-13-1 -1, -1 -1 _-1
a1b6a5 b6, ale a4b6 s a1b5 (5 b4 5 a1b4 agbl 5 a163 Ay bg,
by tagh biaz'b byaz b beay tbgt biasb
109 ~ 204, a201a5 " 02, a202a5 01, a20609 0g , a3010302,
R(5,6) :==
bzaz 'bs! byazby* bsaz ‘b beaz ‘b brasb: !
azbzas "bs ", azbsazb, -, a30s5a3 b5, azbgag " Lg, aq01a505
-1 -1 -1
asboasby, asbzag by,  asbsay bs, asbsasby *,  asbeasbo,
b tasbh by tasby! by tash b tasby ! bsasb
a405 " a506, a4053 a501 -, Q409 Aa505, a40q "G50 , A5030504

Theorem 4. (1) P, = Ao, P, = Ajo.
(2) T is irreducible.

(3) The (Ag, S5 < S10)-group of Example 8 injects in T.
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Proof. (1)

pu(b1) = (1,9,8,3,2)(4,6)(5,7),

po(b2) = (2,10,9,8,3)(4,6)(5,7),

pu(bs) = (1,2)(5,7,6)(9,10),

pu(bs) = (1,2,10,9)(3,8)(4,6,5),

pu(bs) = (1,2)(4,6)(5,7)(9,10),

pu(bs) = (1,7,5)(4,10,6),

pn(ay) = (1,9,11,12,3,2)(4,8,5)(6,7),
pn(az) = (1,10,11)(2,4,12)(5,8,9),

pr(as) = (1,11)(2,12)(5,8)(6,7),

pon(as) = (1,10,4,5)(2,12)(3,9)(6,7,8,11),
on(as) = (1,11)(2,5,6,7)(3,12,8,9)(4, 10).

(2) We compute |P}52)| = 1814400 - 1814401% and apply now Proposition 1(1a).

(3) The (A, S5 < S1p)-complex of Example 3 embeds in X inducing a m-injection by Propo-
sition 5(1). Observe that the underlined 15 elements in R(5,6) are identical with the 15
relators of R(3,5) in Example 3.

O

2.2.6 Two different amalgam decompositions

The next example gives two amalgam decompositions of a I'g, both of the form Fy xp,, Fy, but
acting substantially differently on the corresponding trees 7s,, = 719 and 72, = T1¢.

Example 5.
alblaflbgl, a1b2a2_1b3_1, a1b3a2_1b1, a1b4a2_1()5_1, a1b5a2_165,
albglaglbgl, albzlagbfl, albglaglbg, a1b51a2b4, asbiasbo,
R(5,5) :={ agbza;'by', asbiaz by, asbaaz'by', azbsaz'byl, asbsaz'bst,
a3b3_1a5_1b3, a4b1a21b2, a4b2a21b1, a4b3a5_1b§1, a4b4a4b21,
asbsay 'bs, asbraz 'by', asbaaz 'by ', asbsag 'by', asbsaz by

Theorem 5. (1) P, = Aq; P, =S5 < Sy is primitive, not 2-transitive.
(2) T is irreducible.

(3) T splits as Fy g, Fy in two different ways, one acting locally 2-transitively on the first tree
Tom = T1o (in fact locally transitively on the boundary at infinity OsTi0), the other acting
locally primitively, but not locally 2-transitively on the second tree Tz, = Tio (in particular
not locally transitively on OxTh0)-
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Proof. (1)

po(b1) = (1,9,2),

po(ba) = (2,10,9),

pu(bs) = (1,2,4,5,3)(6,8,10,9,7),
po(bs) = (1,2,10,9)(4,7),

po(bs) = (1,2)(9,10),

pn(ar) = (1,7,9,10,3,2)(4,6,5),
prlaz) = (1,8,9)(2,4,10)(5,6,7),
prlas) = (),

pr(as) = (1,9)(2,10)(5,6),

prlas) = ().

(2) Again, this follows from |P{*| = 1814400 - 18144010,

(3) Use the same ideas as in the preceding decompositions.

2.3 (Ag, Mis)-group

Example 6.

—1;—1 —1;—1 —1;—1
a1b1a2 b2 s albgal bl 5 a1b3a1 bg 5
—1;—1 —1;—1 —1p—1
arbsa; by, arbsay by, aibsay b5,

by tash brasb; ! bsasb; !

a10q "a202, a201a205 az03a20, -,

R(3,6) :=

byaz bt bsash bg tagby !
az04a3 05—, A205a206, a20g " 205
-1 —1;—1 1
azbg “asba, asbias by, a3b2a3 by,

-1 —1;—1 -1

a3b3a3b6 s a3b5a3 b4 5 a3b6a3b3

Theorem 6. (1) P, = Ag, P, & Mo (Mathieu group).
(2) Any non-trivial normal subgroup of T' has finite index.

(3) [I,T) =Ty and Ty is perfect.
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Proof. (1)

pu(br) = (2,6,5),
pu(b2) = (1,2,5),
pu(bs) = (2,5)(3,4),
pu(ba) = (2,5,4),
pu(bs) = (2,3,5),
pu(bs) = (2,5)(3,4),

pn(a1) = (1,

2)(5,6)(7,8)(11,12),

pnlaz) = (1,2,7,5,4,3)(6,11,12,10,9, 8),

pn(as) = (1,

Observe that Mo is already generated by pp(a1) =: o and pp(az) =: 7, since pp(as) =

3 2 2

or3oror?om?0Tor30. As a by-product, we get the following short presentation of M, with

two generators:

Mo = {0, T | 2,75, (07)5, (07075)4, (07'2)6, (07074)5).

2)(3,6)(4,5)(7,10)(8,9)(11,12).

(2) We apply Proposition 9 or [16, Corollary 5.3], using the fact that

Stabp, ({1}) = ((2,8,10,12,5)(3,4,7,6,9), (2,3,6,9)(5,10,7,12), (5,8)(6, 7)(9, 10)(11, 12)) =

is a non-abelian simple group.

(3) This is a short computation.

Conjecture 7. 'y is a simple group.

Remark. Analyzing many (4, 12)-groups, we see that P, = M, can be generated in several ways
by {pn(a1), pn(az)}. We have found seven different cycle structures for {pn(a1), pn(az)} generating

M;is. They are listed in Table 5:

ph(al) Ph(a2)

(3,4)(5,6)(7.8)(9,10) | (1,7,5,3,2)(6,12,11,10,8)
(3,4)(5,6)(7,8)(9,10) | (1,6,5,9,3,2)(4,8,7,12, 11, 10)
(3,6,5,4)(7,8,9,10) (1,4,2)(3,8,6)(5,10,7)(9,11,12)
(3,6,5,4)(7,8,9,10) (1,6,3,2)(4,8)(5,9)(7,12,11,10)
(3,6,5,4)(7,8,9,10) (1,7,3,2)(6,12,11,10)
(3,6,5,4)(7,8,9,10) (1,9,6,3,2)(4,12,11,10,7)
(3,6,5,4)(7,8,9,10) (1,5,9,6,3,2)(4,8,12,11,10,7)

Table 5: Several pairs of generators of Mo
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2.4 (Ag, ASL3(2))-group
Example 7.

—1p-1 —1p-1 11
arbia; by, aibsay by, aibsay by,

—1;—1 -1 -1 —1;—1
a1b4a2 b3 s a1b4 (22} b37 a2b1a2 bQ 5
R(3,4) :=

boaz 'b bsay 'b by taghy
az202a5 01, a20304 " 04, a209 ~a30q

azbrazby,  asbeazby',  aszbzazbs
Theorem 7. (1) P, = Ag, P, & ASL3(2) < Ss.
(2) Any non-trivial normal subgroup of T' has finite index.

(3) [I,T) =Ty and Ty is perfect.

Proof. (1)
pv(bl) = (274a3)7
pv(bQ) = (37 9, 4)7
pu(bs) = (1,2)(3,4),
pu(ba) = (3,4)(5,6),

ph(a’Q) = (1775872)(354765 5)7
ph(a’?)) = (1775 573)(2587654)

(2) Note that
Stabp, ({1}) = ((3,4)(5,6), (3,5, 7)(4,6,8), (2, 7,6,3)(4,8)) = PSL3(2)

is a non-abelian simple group. The statement follows now from Proposition 9, or [15, Propo-
sition 3.3.3] together with [16, Theorem 4.1], or directly from [16, Corollary 5.3].

(3) This is a short computation.

Conjecture 8. 'y is a simple group.
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3 Construction of (virtually) simple (2m, 2n)-groups

Non-residually finite (2m, 2n)-groups have been constructed in [14], [15], [16] for 2m = 196 = 142,
2n = 324 = 182 and independently in [69] for 2m = 8, 2n = 6 using completely different techniques.
We first present in this section an irreducible (A4, P,)-group I' with P, < Sj2 “quasi-primitive”
but such that the quasi-center QZ(H3) is not trivial. Applying a result of [16], this shows that
T is non-residually finite (Example 8). Then, we embed I" into a (Ag, A16)-group (Example 9),
into a (As, A14)-group (Example 10), and into a (ASL3(2)), A14)-group (Example 11). All three
examples turn out to be virtually simple (again by results of Burger and Mozes). Therefore, their
minimal normal subgroup of finite index is a finitely presented torsion-free simple group. We think
that this index is 4 in our examples. This is indeed true for a virtually simple (Ajq, A19)-group
(Example 14) constructed by means of an embedding of Daniel T. Wise’s non-residually finite
example (see [69] or Example 13). Therefore we get an explicit description of a finitely presented
torsion-free simple group in Aut(719) X Aut(710), which moreover has the form Fy xp,, Fy. Similar
ideas lead to many other interesting groups in Section 3.7, 3.8 and 3.9.

3.1 A non-residually finite (4, 12)-group
We begin with a generalization of the notion of a primitive permutation group.

Definition. A non-trivial permutation group G < Sym(2) of a set Q is called quasi-primitive, if
every non-trivial normal subgroup of G (in particular G itself) acts transitively on .

Observe that primitive groups are quasi-primitive, which are for their part by definition tran-
sitive. Some structure theory for locally quasi-primitive groups of automorphisms of graphs has
been developed in [15].

See the following list for all quasi-primitive, but not 2-transitive subgroups of Ss,,, where n < 8:

| G | 2n | primitive | |G| | G < Ay, |
As 10 Y 60 Y
S 10 Y | 120 N
| PSLy(5) | 12 ] N| 60] Y |
| PSLy(7) | 14 | N| 18] Y |
24:5 16 Y 80 Y
24 : Ds 16 Y | 160 Y
(Ay x Ag):2 | 16 Y | 288 Y
(24:5):4 16 Y | 320 Y
24:32:4 16 Y | 576 Y
24:83x 8 | 16 Y | 576 Y
24 As 16 Y | 960 Y
(SyxS4):2 | 16 Y | 1152 Y
24: S5 16 Y | 1920 Y

Table 6: Quasi-primitive, not 2-transitive subgroups of Sy, n < 8.
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Example 8.
alblal_lbl_l, a1b2a2_1b3_1,

—17—-1 —17—-1
airbsal by, aibsay by,
—1;—-1 —1;—-1
alb5a1 bﬁ s albgal bQ s
by taghb bray 'by
@104 203, azbrag “by

-1 —1
asbaasby ",  azbsay by,

a2b5a2_1b1_1, a2b6a2_1b6
Theorem 8. (1) P, = A4, P, 2 PSLy(5) < S12, |P,| = 60.

2) T is irreducible.

3) P, is quasi-primitive, but not primitive.

(2)
(3)
(4) Ay # 1, in particular QZ(Hz) # 1.
(5) T is non-residually finite.

(6)
(7)

6) [I,T] =T and Ty is perfect.

7) (cf. [16, Theorem 6.4] where m > 109, n > 175) For every m > 9 and n > 13, there exists a

torsion-free cocompact virtually simple lattice A < U(Aap,) x U(Azy,) with dense projections.

(8) (¢f. [16, Theorem 6.5]) Any (2m,2n)-group injects for any even natural numbers k > 4,
>4 in a virtually simple (Agm414+ks Aant22+¢)-group.

Proof. (1)

ph(al) - (2a 6,5,4, 3)(7a 8,9, 10, 11)7
pn(az) = (1,5)(2,3)(4,9)(6,7)(8, 12)(10, 11).

(2) Figure 6 shows that we can apply Proposition 1(3a) using the fact that a;b; = bya; and that
pu(b3) = (1,2,3) acts transitively on {1,2,3} = E, \ {a;'} = {a1,a2,a;"'}. Note that the
irreducibility criterion [16, Proposition 1.3] cannot be applied, since P, is not primitive and
K}, (defined in [16] or Section 4.9) is a 3-group.

(3) P, is quasi-primitive, since it is simple and transitive. It has the non-trivial blocks {1, 12},
{5,8}, {4,9}, {3,10}, {2,11}, {6, 7}, and is therefore not primitive.

(4) B :={b3,b3,03,b3,b3, 63,73, 052 b33, b,%,b5%,b5 3} C Ay by the subsequent Lemma 26(1b),
since for each b E B and a € Ej, we have p,(b)(a) = a and pp(a)(b) € B.
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aq (05} aq aq
> > > >
by A Ab; A bs Aby Abs
> > > >
alf -3 a9 aq aq

Figure 6: Proof of Theorem 8(2)

(5) We apply [16, Proposition 2.1].
(6) Easy computation.

(7) We imitate the proof of [16, Theorem 6.4], but replace ()X = A;3 17 (see Example 40) by
the (Ag, Ag)-complex of Example 1 and replace VX = Ay317 X A3 17 by the non-residually
finite (4, 12)-complex X. Note that we use in the proof that PSLy(5) < Sig is even, i.e. a
subgroup of Ais.

(8) If necessary, we embed the given (2m,2n)-complex by [16, Proposition 6.2] in a (4m,4n)-
complex Y with even local permutation groups. Then we apply [16, Proposition 6.1] to
the case where (VX is the (Ag, Ag)-complex of Example 1, (WX is the non-residually finite
(4,12)-complex X and ®X =Y.

O

Lemma 26. Let T' = (a1,...,am,b1,...,bn | R(m,n)) be a (2m,2n)-group.

(la) Let A C {a1,...,am). If for each a € A and b € E, we have pp(a)(b) = b and p,(b)(a) € A,
then A C Aq.

(1b) Let B C (b1,...,byn). If for each b € B and a € E}, we have p,(b)(a) = a and py(a)(b) € B,
then B C As.

Proof. The assumptions made in (1a) directly imply

AcC ﬂ kerpﬁbk)
keN

and we are done since

ﬂ kerpglk) = A
keN

(1b) follows similarly. O

Conjecture 9.
(] N =To.
N4r
See Table 7 for the orders of some quotients of I" (the infinite quotients in this list correspond
to elements in As).
A famous result proved by Malcev ([50], see also [47, Theorem IV.4.10]) says that every finitely

generated residually finite group is Hopfian, where a group G is called Hopfian, if every epimor-
phism G — G is an isomorphism.

Question 3. Is there a non-Hopfian (2m,2n)-group?
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Table 7: Order of I'/({(w*)r, w € {a1,a2,b1,...,b6}, k=1,...,12, in Example 8

Remark. Obviously, (2m,2n)-groups satisfying the normal subgroup theorem (Proposition 9)
are Hopfian and by the result of Malcev, residually finite (2m, 2n)-groups (in particular reducible
(2m, 2n)-groups) are also Hopfian. Note that Zlil Sela proved that torsion-free hyperbolic groups

are Hopfian (see [65]).

3.2 A virtually simple (Ag, Aj5)-group

Example 9.

—1;—1
a1b1a1 bl s

—1;—1
a1b2a2 b3 5

—1;—1
a1b3a1 b4 5

—17—1 —17—1 —17—1
arbsa; by, arbsay by, aibsay by,
brasbg ! bgash b Lagbst
a107a20g a108a208, a10g ~a207 ~,
-1 -1 -1 —17—1
a1b7 Qs b7, (11b2 a2b3, a2b1a2 b5 s
-1 -1 —17—1
a2b2a2b3 y (12b4(12 b4, a2b5a2 bl s
beas b brasb;* biaz'b
Ga206049 Og, a207a307 ~, azb1a3 0s,
-1 —17—1 -1
(l3b2(13 bg, (13b3(13 b4 s a3b4a3 bl,
bsaz 'b beaz b bgaz b
a3z0s5a3 03, a30ea3 Ug, a30g8as 05

Theorem 9. (1) Ph = Aﬁ, PU = A16.
(2) T is non-residually finite.
(3) T is a finitely presented torsion-free virtually simple group, in particular the minimal normal
subgroup of finite index in T’
NN
N4
is a finitely presented torsion-free simple group.

(4) We have amalgam decompositions

Fg*p,, Foo =1 = F3 %y, 17
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and
Aut(’]%) > Fis * P Fis =Ty = F;5 * Fos Fs < Aut(’Tw)

(5) [I,T) =Ty and Ty is perfect.

Proof. (1)
pu(b1) = (),
pv(b2) = (2,6,5),
pu(bs) = (1,2,5),
pv(ba) = (),
pu(bs) = (),
pu(bs) = (),
po(b7) = (1,5, 3)(2,4,6),
po(bs) = (1,5)(2,6),

pn(a1) = (2,6,5,4,3)(7,9,8)(11,12,13, 14, 15),
pnlaz) = (1,5)(2,3)(4,13)(6, 11)(8, 10,9) (12, 16)(14, 15),
pnlaz) = (1,13,14,5,9)(2,15)(3,12,8,16,4)(6,11).

(2) The embedding of the (A4, PSL2(5) < Si2)-complex of Example 8 into X (indicated by the
twelve underlined geometric squares in R(3,8)) induces a mi-injection by Proposition 5(1).
Because of Theorem 8(5), I' is non-residually finite neither.

(3) Apply [16, Corollary 5.4].
(4) We use the same arguments as in Section 2.

(5) Easy computations.

Conjecture 10. 'y is a finitely presented torsion-free simple group. Equivalently,

ﬂ N =T,.
foi.

NI
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3.3 A virtually simple (Ag, A14)-group

Example 10.

alblaflbl_l, albgaglbgl, albgaflbzl, a1b4a1_1b5_1,
a1b5af1b81, a1b6af1b§1, a1b7a51b;1, alb;1a3b7,
albglagbg, agblaglbgl, a2b2a26§1, a2b4a2_1b4,
R(4,7) := { asbsay 'by"', asbgay 'bs,  asbray'b;',  azbiasby’,
a3b2a4bl_1, a363a4bg, a364aglb5, a3b5a4b4,
a3b6a3 b6 1, a3b;1a4b3, a3bg1allb21, a3b§1a4b7,
a3651a4b§1, a3bf1a4bl, a4bsallbg1, a4bgla4bll

Theorem 10. (1) P, = Ag, P, = Ay4.
(2) T is non-residually finite.
(3) T is a finitely presented torsion-free virtually simple group.
(4) There are amalgam decompositions
Frxpy Fos =1 = Fy xpyy Foo

and
Aut(’fg) > F13 * For F13 = FO = F7 * Fgg F7 < Aut(’]'M).

(5) [I,T) =Ty and Ty is perfect.

Proof. (1)
pu(b1) = (3,5)(4,6),
pu(b2) = (2,8,7)(3,5)(4,6),
polbs) = (1,2,7)(3,5)(4,6),
pu(ba) = (3,4,5),
pu(bs) = (475, 6),
pu(bs) = ();
po(br) = (1,2,4,6)(3,8,7,5),
pn(a1) = (2,6,5,4,3)(9,10,11,12,13),
prlaz) = (1,5)(2,3)(4,11)(6,9)(10, 14)(12,13),
pn(as) = (1,2,13,3)(4, 10)(5,11)(8,12),
pn(as) = (2,13,14,12)(3,7)(4, 10)(5, 11).

(2) The embedding of the (A4, PSL2(5) < Si2)-complex of Example 8 into X (indicated by the
twelve underlined geometric squares in R(4,7)) induces a m-injection by Proposition 5(1).
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(3) Apply [16, Corollary 5.4].

(4) Use the same arguments as in Section 2.

(5) These are easy computations.

Conjecture 11. T'y is a finitely presented torsion-free simple group.

Remark. It seems to be impossible to embed X of Example 8 into a virtually simple (A4g, A14)-
complex. However, it seems to be easy to embed X of Example 8 into a virtually simple (A, A2y )-

complex,if m>3, n>8orm>4,n>7.

3.4 A virtually simple (ASL;(2)), A14)-group

Example 11.
—17— —17—1 —17—1 —1;—1
alblal bl 5 aleGQ b3 s albgal b4 s alb4a1 b5 s
—1;—1 —1;—1 —1;—1 -1
arbsay b, aibea; by, aibray by, aibs asby,
-1 —1;—1 -1 -1
a1bs "asbs, agbiay by ", asbaazbs azbsas " ba,
— —1;—1 -1 —13-1
R(4,7) == ¢ asgbsay 'b7"', asbsay 'bs, asbray 'b7', asbiasby,
—1;—1 —1;—1 -1
a3b2a3 b3 s a3b3a4 b2 y a3b4a4b7, a3b5a4b6 y
beasby " b tagb bg tasb by tasb
a3zbea40q a3by 401, a3bg a40s5, a3by a40¢,
-1 -1 -1 -1 -1 -1
a3b4 a4b5 s a3b3 a4b2, a3b1 a4b4 y a4b3a4b2

Theorem 11. (1) P, = ASL3(2) < Ss, P, = A14.

(2) T is non-residually finite.

(3) T is a finitely presented torsion-free virtually simple group.

(4) There are amalgam decompositions

F7 *Fug F25 N F4 *Fyg F22

and

Aut(Tg) > Fi3 *p,, Fi3

(5) [I,T] =Ty and Ty is perfect.
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Proof. (1)

pu(b1) = (3,5)(4,6),

pu(b2) = (2,8,7)(3,4,5),
pu(bs) = (1,2,7)(4,6,5),
pu(ba) = (3,5)(4,6),

pu(bs) = (3,5)(4,6),

pu(bs) = (3,5)(4,6),

po(b7) = (1,2,4,6)(3,8,7,5),

(a1) = (2,6,5,4,3)(9,10,11,12,13),
(a2) = (1,5)(2,3)(4,11)(6,9)(10,14)(12, 13),
pn(as) = (1,6,5,11)(2,3)(4,14,8)(9,10)(12,13),
(a4) = (

1,11,7)(2,3)(4,10,9,14)(5,6)(12, 13).

(2) The embedding of the (A4, PSLa(5) < S12)-complex of Example 8 into X (indicated by the
twelve underlined geometric squares in R(4,7)) induces a m-injection by Proposition 5(1).

(3) Apply [16, Corollary 5.3] (cf. Example 7).
(4) Use the same arguments as in Section 2.

(5) These are easy computations.

Conjecture 12. 'y is a finitely presented torsion-free simple group.

3.5 Two examples of Daniel T. Wise

Example 12. (See [69, Section II.2.1], the transition from his notations to ours is given by
r—a, Yy — az, a"bl; beQ, CHb3.)

131 —1
arbeal b7, asbaas by,

R(2,3) :={ ajbza; 'b3', aibiay byt

agblal_lbgl, asbsa; b,
Theorem 12. (1) (Wise [69]) T is irreducible and not (b1, bs,bs)-separable.
(2) |{b3™aza; b} : n € Z}| = oo, more precisely

. —1m aray 'b; "y, n odd
by "aga; by = .
- - n
aza; by b, n even.
—1 2
(aray )%, n odd
, TN even.

In particular,
|{b3 " (aga; ")?b% :n € Z}| = 2.
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(4) Zr(b3) is not abelian, in particular T is not commutative transitive.
(5) T is not a CSA-group.

Proof. (1) See [69]. Let G be a group and H < G a subgroup. Recall that G is said to
be H-separable, if for each element g € G \ H, there is a homomorphism ¢ : G — Q
onto a finite group Q such that (g) ¢ (H). It is shown in [69, Corollary 11.4.4] that
Y(aray ') € Y({by,ba, b3)) for every homomorphism ¢ : T' — Q with |Q| < occ.

(2) This can be proved by induction, using b3a1a51 = agaflbg and b3a2af1 = alaglbg.
(3) This follows from the fact that (aza;*)? and b2 commute.

(4) This follows from {bs, (aza;")?} C Zr(b2) and [bs, (aza; )] = (ara;')* # 1. A group
G is called commutative transitive, if [g1,92] = [g2,93] = 1 (91,92,93 # 1) always implies
[91793] =1

(5) A group G is called a CSA-group if every maximal abelian subgroup M of G is malnormal,
ie. g7!MgN M =1 for any g € G\ M. Here, (b3) is a maximal abelian subgroup of T,
since (b3) = Zr(bs) by Proposition 8(1b), but (aza; ') ~2b3(aza;')? = b2 € (b3). It is known
(see [58]) that all torsion-free hyperbolic groups are CSA-groups and that all CSA-groups
are commutative transitive (in particular (5) is directly implied by (4)).

O

Remark. The proof of Theorem 12(1) given in [69] is based on the fact that the elements az, bs
have no commuting non-trivial powers (this phenomenon is called anti-torus and was proved in
[69, Proposition I1.3.8]. More about anti-tori in Section 5.6). Note however, that (ag, b3) is not a
free subgroup of I' since we have a non-trivial relation b3 Qag 3b§a2b§ lagbsas = 1in T.

Remark. {(aja;")?, (a3 a1)?} C A;.

Using the separability property of Theorem 12(1) and the following lemma of Darren D. Long
and Graham A. Niblo, a doubling of the (4,6)-group I" along its subgroup (b1, b2, b3) (geometri-
cally: doubling X along its vertical 1-skeleton E,) leads to the non-residually finite (8,6)-group
of Example 13. (By a double of a group G along a subgroup H, we mean an amalgamated free
product G *_z G, where G — H is an isomorphic copy of G — H.)

Lemma 27. (see [{2, Lemma, p.211]) Let 0 : G — G be an automorphism of a residually finite
group G. Then G is Fix(0)-separable, where Fix(6) := {g € G : 0(g) = g}. More precisely, if
0: G — G is an automorphism and G is not Fix(0)-separable, then

r0(x) € ﬂ N,
NETe
where x € G\Fix(0) is any element such that ¥(x) € ¥(Fix(0)) for all homomorphisms ¢ : G — Q
onto finite groups Q.

Proof. See [42]. The same result is true for endomorphisms # : G — G of finitely generated
residually finite groups G, see [69, Theorem I1.5.2]. O

Example 13. (See [69, Section II.5], where this example is called D)

—1p—1 —1p—1 —1p—1 —1p—1
arboay by, agbaas b7, aibsay by, aibiay by,

R(4,3) =1 asbia;'bz', asbza;'by', azbaaz'byl, asbeaj by,

—1;—1 —1;—1 —1;—1 —1;-1
a363a4 bg 5 a361a4 bQ s a4bla3 bg s a4bga3 b2
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Theorem 13. (Wise [69, Main Theorem I1.5.5]) T' is non-residually finite.

Proof. By [69], we have for example

asaj tazayt € m N.
NGT
O
Remark. For each k € N, we can find a normal subgroup of I" of index k. Indeed, it is easy to

check that
F/<<b1,b2,b3,a1,a2,a§>>r = (a3 | a§> =Y
In particular, it follows that
r: ﬂ N] = oc.
N'GT
Of course (by Theorem 13): agaj ‘aza;* € (b1, b2, b3, a1, az,ak)r. Indeed, we even have asa; ‘aza; ' €

{(bsHr, since
agal_la;gazl = (bg_lalbgal_lbg)(a4b3_1azl).

Remark. T'/{{b1))r = (a1,a3) = Fy, in particular, I has “many” quotients.

Remark. In Example 12 and 13, the permutation groups P, and P, are not transitive and I'*®
are infinite (Z x Z and Z x Z x Z respectively), due to the fact that the groups I' are horizontally
and vertically directed.

3.6 Construction of a simple amalgam Fj xp,, Fy

In this section, we construct a finitely presented torsion-free simple group. First, we give two
elementary but crucial lemmas used in the proof of Theorem 14(6).

Lemma 28. Let G be a group, H < G a non-residually finite subgroup of G and h € H an element
such that

l#he (| M

.
M<JH

he (I N

i
NG

Then

(in particular G is again non-residually finite).

Proof. Let N <1 G be a normal subgroup of finite index in G. Obviouslyy, NN H <GNH = H.
Moreover [H : (NN H)] <[G: N] < co by Lemma 12, hence h € NN H < N. O

Lemma 29. Let G be a non-residually finite group and g € G an element such that
l#gc¢€ ﬂ N
~N4a
and assume that the normal subgroup (g)c has finite index in G. Then

(aha= [ N

fii.
NG
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£i.
Proof. By assumption, we have (g))¢ < G, hence

{ghe 2 N.

f.i.
NG

The other inclusion follows directly from

ge [ N <G

£i.
NG

Now, we are ready to describe one of our main examples:

Example 14.

—1;-1 —1;-1 —1;-1 -1 -1
arbias by, arbea; by, airbsa; by, aijbsasbs -, arbsag by,
—1 -1 -1 -1 -1 -1 -1 —1;—
aibg “asby ", a1by “asbs, a1bs “ay ba, a1by "ay b3, asbaay by,
= —1 -1 —1;-1 —1;—-1 —1;—-1
R(575) T a2b4a2 b5, a2b5a4b4 5 a3b1a4 b2 , a3b2a3 bl 5 a363a4 bg 5
-1 -1 -1 -1 -1 —1;—1
a3b4a4b5, a3b5 a4b4, a3b3 Ay b2, a3b1 Ay bg, a4b2a4 bl s
-1 _—-1;-1 -1 —1;-1 —1;—-1 —1;—-1
a4b5 Qg b4 s a5b1a5 b3, a5b2a5 b5 5 a5b3a5 bl 5 a5b4a5 52 5

Theorem 14. (1) P}l = AIO; PU = AlO-
(2) T is non-residually finite.
(3) T is a finitely presented torsion-free virtually simple group.

(4) There are two amalgam decompositions
F = F5 *F41 FQl
and two amalgam decompositions

Ty & Fy * Fgq Fy < Aut(TlO)

5) [I,T] =Tg and Ty is perfect.

6) Lo is a finitely presented torsion-free simple group!

(
(
(7) d(T'*) — oo linearly for k — oo, but d(TE) < 3 for all k € N.
(8) Zr(as) = Nr({as)) = (as)-

(

9) by € Zr(a?), in particular T' is not commutative transitive.
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Proof. (1)

pu(b1) = (7,8)(9,10),

pu(b2) = (1,2)(3,4),

pu(bs) = (1,2)(3,4)(7,8)(9,10),
po(ba) = (1,8,4,5)(2, 7,3, 10),
pu(bs) = (1,9,4,8)(3,10,6,7),
prla1) = (1,2)(4,6,7,5)(8,10,9),
pn(az) = (1,2,3)(4,5,7,6)(9, 10),
pnlas) = (1,2)(4,5,7,6)(8,10,9),
prlas) = (1,2,3)(4,6,7,5)(9,10),
pn(as) = (1,3,10,8)(2,4,6,9,7,5).

(2) The embedding of the non-residually finite complex of Example 13 into X, indicated by the
twelve (single or double) underlined geometric squares in R(5,5), induces a mi-injection by
Proposition 5(1). The six geometric squares coming from Example 12 are doubly underlined.

3) Apply [16, Corollary 5.4].

5

(3)
(4) We use the same methods as usual.
(5) These are easy computations.

(6)

6) We only have to show that

Ty = ﬂ N.
NET

Set w := azay ‘azay . Then by Theorem 13 and Lemma 28 we have

w e ﬂN,

hence by Lemma 29, using the fact that every non-trivial normal subgroup of I" has finite
index in T (by Proposition 9), we have

A computer algebra system like GAP ([28]) immediately checks that
[F : <<w>>p] = |<a1a sy 5,015,000, 05 | R(5a 5),’LU>| =4

Since [I": T'g] = 4 and w € Ty, we conclude that

(] N = (w)r =T

fi.
N4&T
(Alternatively and more explicitly, one proves {(w))r = I'g by checking that

FO = <a1a51, bgbfl, bgbgl>
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and
aray’ = (babswbz 'y 1) (bsw™ b5 ) € (w)r,

bsby " = (by "bsw by 1) (brbswds b ) € (whr,

bsbs ' = (b7 by wbaby ) (bsby 'wbabs ) € (whr.)
(7) We apply results of James Wiegold and John S. Wilson ([68]). First note that d(I") = 2, since
for example T' = (ay,bs), and d(Ty) = 2, since Ty = (a?,bsb; ') (this can be checked with

GAP). By [68, Theorem 2.2], we have d(T'*) = 2k, if k > 18. However, using the simplicity
of Ty, [68, Theorem 4.3] implies d(I'f) < d(I'g) + 1 = 3 for all k € N.

(8) This follows from Proposition 8.

(9) We compute a2b; = byai. Combining this with (8), I' is not commutative transitive.
o

A finite presentation of the simple group I'y is given as follows: We take 37 generators s1, ..., S37

and 100 relators

524534, 510523533, 511524535, 512519537, 513527531,

518520536, 517520532, 516524529, 514524530, 5$1510524533,
51512524532, 51513521536, 52526534, 52510525533, 52511526535,
52512521532, 52518521531, 52516526529, 52514526530, S3510526533;
53518527536, S4527530, 54810527537, 545115275833, 54512527534,
5§5510519533, 55534, 5§5511519535, 55513524836, S5517522537,
5§5512525532, 855518525531, S5515519530, 55516519528, S6519534,

56518519536, S6512526537, S7S510521533, S7520534, 57511521535,
57518526536, S7S517526532, S7S15521530, S7S16521528, 8521534,

58512522532, 59516522533, S9513522534, 59522535, 59510522536,
56515528, 5§5514529, 56516530, 51518531, 5$9512532,

5§2817537, 5§2513536, 56510535, 56511533, 56514519529,
56513519531, S3S5175195832, 58515520528, S7514520529, S8516520530,
5§3513520531, 3512520837, 58510520535, 58511520533, S8514521529,
$95817521537, 59511522528, 59518522529, 595145225830, $9515522531,
51514523529, 515523528, 51516523530, 56517523532, 54518523536,
57513523531, 57512523537, 51511523534, 51523535, 5§1515524528,
51517524537, 58518524531, 53514525529, S2515525528, S3516525530,
58517525537, 58513525536, S3511525534, S3525535, 53515526528,
54513526531, 54514527535, 54515527532, 54516527528, S4517527529

Of course, this presentation can be slightly simplified, e.g. using the identities s5 = s94 = s§41.

Remark. The smallest candidate for being a finitely presented torsion-free simple group in the
construction leading to [16, Theorem 6.4] has much more complicated amalgam decompositions

Aut(7218) > F349 *Frages F349 = Fo17 ¥ g0, Fo17 < Aut(7zs0).

3.7 More simple groups

Using exactly the same ideas as in Theorem 14, we embed in this section the non-residually finite
(8,6)-complex of Example 13 into several (2m, 2n)-complexes with virtually simple fundamental
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groups I'. See the following list (Table 8) for (2m, 2n) € {(10, 10), (10,12), (12,8),(12,10), (12,12)}.
As before, the group
() N = (aza; 'azay r
NGT

is finitely presented torsion-free and simple. In the list, we use the following notation:

= ﬂ N.

£
NI

In the third column, [2, 2] stands for Z2 etc. and in the last column, for example (9, 81,9) means an
amalgam decomposition Fy*p,, Fy. Note that I'g and I'* always have two amalgam decompositions,
a horizontal and a vertical one. Since I'* < Ty is a subgroup, the index [ : I'*] is a multiple of 4.
In most (but not all) examples listed below, we have [I',I'] = I'*, in particular for these examples
|Fab‘ = [[':T*] and [I',T] is simple. In all examples (in particular for those with I'* < [I',T']), we
compute

I = ([a1, az], [a1, b1], [a1, ba], [a1, b3], [a2, b1], [az, b2], [az, b3], [b1, ba], [b1, bs], [b2, b3]))r-

This observation gives some indications that Conjecture 16 (in Section 3.10) is true. If [I' : I'*] >
|Fab‘, we give the non-abelian quotient I'/T*, which is not always nilpotent. Three more examples
of the list (Example 15, Example 16 and Example 17) will be described explicitly after the list. We
have chosen these examples for the following reasons: In Example 15, P, & Mo, the fascinating
Mathieu group; in Example 16, I'* < [[',T] and in Example 17, [T" : I'*] = 40 is relatively large,
the largest in this list.

| Ex | r |re [ [r®] [[T:T*]| T/T* | T*={asa; asaz")r |
(10, 10)

14 | (A1, A1) [ [2,2] 4] 4 (9,81,9) = (9,81,9)
(A10, A10) | [2,2,2] 8| 8 (17,161,17) = (17,161,17)
(A10, 410) | [2,4] 8| 8 (17,161,17) = (17,161,17)
(A10, A10) | [2,2,3] 12 12 (25,241, 25) = (25,241, 25)
(A10, A10) | [2,2,4] 16 | 16 (33,321,33) = (33,321, 33)
(A10, A10) | [2,8] 16 16 (33,321,33) = (33,321, 33)
(A10, A1o) | [2,2,5] 20 20 (41,401, 41) = (41,401,41)
(A0, Avo) | [2,2,2,3] | 24| 24 (49,481, 49) = (49, 481,49)
(A10, A10) | [2,3,4] 24| 24 (49,481, 49) = (49, 481,49)
(A10, A10) | [2,2,8] 32| 32 (65,641, 65) = (65,641, 65)

17 | (A1, Aw) [ [2,4,5] 0] 40 (81,801,81) = (81,801, 81)

(10,12)
(A1o, A12) | 2,2] 4] 4 (11,101,11) = (9,97,9)

16 | (A1, A1) | [2,2] 4] 12 Ds | (31,301,31) = (25,289, 25)
(A10, A12) | [2,2,2] 8| 8 (21,201,21) = (17,193,17)
(A10, A12) | [2,2,2] 8| 24 | S3xZ3 | (61,601, 61)=(49,577,49)
(A10, A12) | [2,4] 8] 8 (21,201,21) = (17,193,17)

(12,8)
(A12,45) | [2,2] 4] 4 (7,73,7) = (11,81,11)
(A12,45) | [2,4] 8| 8 (13,145,13) = (21,161,21)
15 | (Miz, As) | [2,2] 4] 4 (7,73,7) = (11,81,11)
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(12,10)
A1z, A10) | [2, 4 4 (9,97,9) = (11,101,11)
A2, A10) | [2, 4 12 Dg (25,289,25) = (31,301, 31)
A1z, A10) | [2, 4 20 Ds x Zy | (41,481,41) = (51,501, 51)
A2, A10) | [2,2,2] 8 8 (17,193,17) = (21,201, 21)
A2, A10) | [2, 8 8 (17,193,17) = (21,201, 21)
A1z, A10) | [2,2,2) 8 16 Dy x Zsy | (33,385,33) = (41,401, 41)
A2, A10) | [2,2,3] 12 12 (25,289, 25) = (31,301, 31)
A12, A10) | [2,8] 16 16 (33,385,33) = (41,401,41)
A2, A10) | [2,2,5] 20 20 (41,481,41) = (51,501, 51)
A1z, A10) | [2,2,2,3] 24 24 (49,577,49) = (61,601, 61)
(M2, A1o) | [2,2 4 4 (9,97,9) = (11,101,11)
12,12)
A2, A12) | [2,2] 4 4 (11,121,11) = (11,121,11)
A1z, A12) | [2,2,2) 8 8 (21,241,21) = (21,241, 21)
(A2, A412) | [2,2,3] 12 12 (31,361,31) = (31,361, 31)
Table 8: Many simple groups I'*
Example 15.

R(6,4) :

Theorem 15.

—1 1
a1b1a2 b2 5

—1 1
albgal bl 5

—1p—1
a1b3a2 bd 5

albflaglbg,

—1;—1
a2b2a2 bl 5

-1, —1;—1
azby ay by,

—1;—-1
a5b2a6 b2 ,

a3b§1a21b2,

agbsasby,

a3b1_1a21b3,

aibsasby,

—1p—1
a3b1a4 b2 s

—1 —1
a1b4 a2b4 s

—17—-1
a3b2a3 bl s

albglaglbg,

—1;-1
a3b3a4 b3 s

—1;—1
a4b2a4 bl s

—1;—-1
a5b3a5 bd ,

(1) Py = My, P, = As.

(2) T is non-residually finite.

asby tag b7t

a5bf1ag1b1,

(3) T is a finitely presented torsion-free virtually simple group.

(4) There are amalgam decompositions

and

Fyxp,, Fig 2T = Fg xp,, Foy

-1 -1
CL4b4 a5b4 s

—1;-1
(1(;b3(16 b4 y

Aut('flg) > Iy * g F, =Ty Fiy * g, Fi1 < Aut(’]é)

(5) [I,T) =Ty and 'y is perfect.

(6) To is a finitely presented torsion-free simple group.
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Proof. (1)

(2) The embedding of the non-residually finite complex of Example 13 into X (indicated by the
twelve underlined geometric squares in R(6,4)) induces a m-injection by Proposition 5(1).

3)
(4)
(5)
(6)

Example 16.

Same arguments as usual.

—1;-1
(111)10,2 b2 y

pu(b1)
po(b2)
pu(b3)

(ba)

5
L
1
Pov(bg 1

(
(
= (
(

Prla1

Prla2

(a1)
(a2)
pr(as)
(as)
(as)
(a6)

=

h\Q4

Prlas

Phll6

(1,
(1,
(1,
(1,
(1,
2,

These are easy computations.

1
arbaa; o7t

6
2
2
1

,6)(7,
)(3;
,2)(3,

2
2

4)(5,6)(7,

2)(4,5)(6,8,7
3)(4,5)(7,8
(4,5)(6,8,7
,3)(4,5)(7,8

Y
) )
2) ,

)
)
)
5)(7,8)

? Y

7)(4,5),
8)(3,5,6,4).

—1p-1
aibsas b3,

—1
arbeay by,

albflaglbg,

a1bg ' asbs,

—1;—1
a2b2a2 bl s

—1;-1
a3b1a4 b2 s

—1;—1
a3b2a3 bl s

-1 -1
a1b5 ag b5,
—1;—1
a2b4a3 b6 5

—1;-1
a3b3a4 b3 5

—1 —1;-1
asbg “ay bg

—1;—1
a5b1a5 bl s

Theorem 16. Let

(1) Pp = Ao,

v*AIQ

agbglallbg,

agbflazlb&

8)(9,10)(11,12),

8),

4)(9,10)(11,12),
,11,5,9,10)(2,12,3,4,8),

3) We use [16, Corollary 5.3] and conclude as in [16, Corollary 5.4].

6) The proof is in the same spirit as the proof of Theorem 14(6).

arbsaghy !,
arby ta;togt,
agbgaglbll,
asbyasbs,

—1;—-1
a4b2a4 bl s

—1
asbaag b,

—1
asbzag " bs,

=N

fi.
N<r

(2) T* is a finitely presented torsion-free simple group.

—1p—1
a5b4a5 bg 5

(3) The subgroups of ' of finite index and the normal subgroups of T' are

o4

-1
a1bsagb;
-1 -1
a1b3 ag b2,
bg Lasb
a20g G306,
—1;—1
agb5a4 b4 5
-1 -1
asby “asby

—1
a5bga5 bﬁ

completely known.




Proof. (1)

pu(b1) = (7,8)(9, 10)

pu(b2) = (1,2)(3,

pu(bs) = (1,2)(3, (7 8)(9,10),
pu(bs) = (1,9,8,5,7,10,2,3,4),
pu(bs) = (1,9,10,2)(3,4,6)(7,8),
pu(bs) = (1,4,10,7)(2,3,9,8),
pr(a1) = (1,2)(6,9)(10,12,11),
pr(az) = (1,2,3)(4,6)(11,12),
pn(as) = (1,2)(4,5,8)(7,9)(10,12,11),
pn(as) = (1,2,3)(4,7)(5,9,8)(11, 12),
pr(as) = (2,11)(3,4,8)(5,10,9)(6,7).

(2) The proof is the same as in the previous two theorems.

(3) We have used GAP ([28

]) for the computations. Look at the following diagram, which

describes all subgroups of T" of finite index (I" has no non-trivial normal subgroups of infinite

index by Proposition 9).

1

12

oo

H,

Here are some explanations: Ny, Na, N3, N4 are normal subgroups of I'. Hy, Hy, Hs are
subgroups of I', but not normal. The index in I" is given on the left side of the diagram. All
arrows are inclusions. The subgroups of I" are defined as follows:

N is the kernel of I' — Sy given by a; —
Ny is the kernel of I' — Sy given by a; —
N3 is the kernel of I' — S5 given by a; —

(), bj = (1,2)
(172)7 bj = ()
(172)7 bj = (172)

(By the way, the normal subgroups N1, N3, N3, defined as above, always exist in a (2m, 2n)-

group I'.)



Ny is the kernel of ' — S5 given by a1,as — (1,2)(3,5)(4,6), as,as,as — (1,3)(2,4)(5,6),
bl; b2; b3; b4; b5 = ()a bﬁ = (15 47 5)(25 37 6)

H1 = <(]J17 a5a§1, b1>

HQ = <(]J17 (150,;1, bgb;1>

H3 = <a5a§1, blafl, b20,f1>.

We have I'/T* 2 Dg, the dihedral group of order 12; I'/Ny & S5, N1 /T* = S5, No/T* = Zg,
N3/F* = 53, Hl/F* = ZQ X ZQ,

[[',T] = [N1, N1] = [N3, N3] =T, [I'0,T0] = [N, Nao] = [N4, N4| = [H1, Hi| = [Ho, Ho] =
[Hs, H3] =T*.

The following commutators are not in I'*: [a1, as], [a1, a4], [a1,as], [a1,bs], [az,as], [az, ad],
[a2) a5]7 [a2) b6]7 [a/?n bﬁ]) [a/47 bﬁ]) [a/57 bﬁ]

In addition, see Table 9 for the orders of some quotients of I'.

| [T/ [ k=1] 23] 4[5] 6[7] 8[9]10]11]12]
w = a 21122 (12212 |2 |12 |2 | 12 2112
as 21122121212 |2 12| 2| 12 2112
as 21122 (12212 |2 |12 |2 | 12 2112
ay 21122121212 |2 (12| 2| 12 2112
as 21122 (12212 |2 |12 |2 | 12 2112
by 6112|612 |6 |12 |6 |12 |6 | 12 6| 12
by 6112|612 |6 |12|6 |12 |6 | 12 6 | 12
b3 6112|612 |6 |12 |6 |12 |6 | 12 6| 12
b4 6112|612 |6 12|16 |12 |6 | 12 6 | 12
bs 6112|612 |6 |12 |6 |12 |6 | 12 6| 12
be 2 416 4121122 416 4 2112
Table 9: Order of T'/{(w*)r, w € {ai,...,as,b1,...,bs}, k =1,...,12, in Example 16

Example 17.

R(5,5) :=

—1;-1
(11b1(12 b2 y

—1;-1
(11b2(11 bl y

—1;-1
(11b3(12 bd s

—1 —1
a1b4 (12b4 y
—1;—1
a2b5a5 b5 s
3bsashy !
a305a40,

—1 1
a4b2a4 b1 s

Theorem 17. Let

(1) Pp = A1, P, = Aro.

albglaglbg,

albflaglbg,

a1bsazby,

—1;—-1
a2b2a2 bl s

-1 -1
a2b5 Qg b5,

—1 —1
aszby “asbg ",

—1p—1
a5b1a5 bd s

I =

—1;—1
a3b1a4 b2 5

—1p—1
a3b2a3 bl 5

—1;—1
a1b5a1 b5 s
azbya4by,

—1;—-1
a3b3a4 b3 5

asby tasbs,

—1p—1
a5b2a5 b2 5

M N

fi.
N4r

(2) T* is a finitely presented torsion-free simple group.

o6

a3b3_1a21b2,

a3b1_1a21b3,

-1
a5b3a5 b47

—1
a5b4a5 b1




(3) All finite index subgroups of T' are normal.

where all arrows are inclusions.

They are visualized in the following diagram,

| //771Tﬁ
2 N1 Ny N3
1 Ny { Ne
8 Ng
5 N7
10 N1y Nio Ny
20 N1y Nis 12
40 IT*
00 1
Proof. (1)
pv(bl) = (77 8)(9a 1O)a
pU(bQ) = (17 2)(3a 4)a
Po (b3) = (17 2)(3a 4)(77 8)(9a 10)7
Po (b4) = (17 9,4, 8)(2a 10, 3, 7)7
Pv (b5) = (27 5)(35 7)(4’ 8)(67 9)?
prla1) = (1,2)(4,7)(8,10,9),
prlaz) = (1,2,3)(4,7)(9,10),
pnlas) = (1,2)(4,5,6,7)(8,10,9),
pn(as) = (1,2,3)(4,5,6,7)(9, 10),
pnlas) = (1,7,3)(4,8,10).

(2) We apply the same strategy as in the previous theorems.

o7



(3) Using GAP ([28]), we have computed

Ny = (af,a1b1))r,
No = (b1))r,

N3 = ((a1))r,

Ny = {(a1ba))r,

N5 = <<a1b5>>r,

Ng = (af))r = Lo,
N7 = (a3, b})r,

Ng = ((ai)r,

Ny = {afaz " )r,
Ny = (a?b; " )r,
Ny = <<G%O,(11b1>>r,
N1z = ((a1%))

Nig = ((a1b1)r,
Nis = ((bsaz ")r,
' =[[T] = (a1ay

2 e =

ay

>>Fv

F/Nl = Zo
F/NQ = 7o
T/N; = Z,
I'/N, =7,
F/Ng, = 7y
I'/Ne¢ =73
T/N; = Zs
T/Ns = Zy x Z4
T /Ny = Zy x Zs
T/Nio 2 Zs x Zs
T/Ny 2 Zy x Zs
T/Nip = 73 x Zs
T/Ni3 = Zy x Zs
F/N14 = Z4 X Z5
[/T* 2 Zo X Zy X Zs

F/F* = Fab = <a1,b5 | a%bgfi,a?bg, [al,b5]>.

See Table 10 for the orders of some quotients of I'.

| [T/ [ k=1]2]3]4] 5]6][7[8]9]10][11]12
w = a 2141281042 |8|2]20 2 8

as 2141281042 |8|2]20 2 8

as 2141281042 |8|2]20 2 8

aq 2141281042 |8|2]20 2 8

as 2141281042 |8|2]20 2 8

by 2141281042 |8|2]20 2 8

by 2141281042 |8|2]20 2 8

b3 2141281042 |8|2]20 2 8

by 2141281042 |8|2]20 2 8

bs 2141281042 |8|2]20 2 8

Table 10: Order of I'/{(w*)r, w € {a1,...,a5,b1,...,b5}, k=1,...,12, in Example 17

See Appendix C.5 for a list of embeddings of the non-residually finite (8, 6)-complex of Example
13 into (10, 10)-complexes X such that P, and P, are both primitive permutation groups.

3.8 An example with infinite but no finite quotients

We use an embedding of the non-residually finite (8, 6)-complex of Example 13 to get a non-simple

group Ty < Aut(719) x Aut(719) without proper normal subgroups of finite index.
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Example 18.

—1;-1
(111)10,2 b2 y

—1p—1 —1p—1
arbea; by, aibsa; by, aijbsarbs,

—1 5-1
a1bg “agby 7,

albglallbgl, albglaglbg, albflaglbg, a2b2a2 by 1, asbsasbs,
R(57 5) = agbzlaglbzl, agblallbgl, a3b2a3 b1 1, a3b3azlb§1, a3b5a4bll,
a3b as b5 1, a3b21a4b5, 0,31)3_10,21()2, a3b1_1a21b3, a4b2a4 by 1,
a4bg1a5bg1, a5b1a5b4, a5b2ag1b3, a5b3aglbg, a5blla5bf1
Theorem 18. (1) P, < Sy is transitive, but not quasi-primitive; P, = S1g.
(2) [I,T) =Ty and Ty is perfect.

(3) Tg has no proper normal subgroups of finite indez.

(4) T is not simple.

Proof. (1)

pu(b1) = (5,6)(7,8)(9,10),
pu(b2) = (1,2)(3,4),

pu(bs) = (1,2)(3,4)(7,8)(9, 10),
po(bs) = (1,4,8,9,2,3,7,10)(5,6),
pu(bs) = (1,9,2,10)(3,5,7)(4,6,8),

generating a transitive subgroup Pj, < Sig of order 3840. It is not quasi-primitive, since P},

has a normal subgroup of order 2 generated by the element (1,

po(b1)py(b2).

(2) Easy computations.

(3) By construction, the non-residually finite complex of Example 13 embeds into X. Set w :

pr(a1) = (1,2)(4,7,5,6)(8,10,9),
prlaz) = (1,2 3)( 7,5,6)(9,10),
pr(as) = (1,2)(4,5,6,7)(8,10,9),
pn(as) = (1,2,3)(4,5,6,7)(9, 10),
pr(as) = (1,7)(2,8)(3,9)(4,10)(5,6).

2)(3,4)(5,6)(7,8)(9,10)

asai 'azay'. As in Theorem 14, we observe that (w))r = I'g, in particular

Since

we conclude that

w e ﬂ N,
NGT
(whr = [ N =T
NGT



Assume now that M is a finite index normal subgroup of I'g. Then M has finite index in T’

and therefore
M> (VL= () N=T,
LZT NGT
hence M =T.
QZ(H,) N Ty is a non-trivial normal subgroup of infinite index in I'y. More precisely,
A= {(ara3 M)F?, (a3t a1)*?, (aza; ) F?, (aytaz)*?, 0t} € Ay NTo < QZ(Hy) N Ty,
since for each a € A and b € E, we have pp(a)(b) = b and p,(b)(a) € A, using Lemma
26(1a).

Note that for the vertical decomposition of I'g = Fy *p,, Fy, which exists by Proposition 3
because of

Ph - <p7j(b%)a pv(ble)a pv(b1b4)apv(b§)>a

we have |Fg1\Fy/Fs1| = 3 (> 2 since P, is not 2-transitive by Proposition 22) and Ty is
therefore even SQ-universal, according to Rips’ result mentioned in Section 2.2.
O

Remarks. (see Appendix E.5 for much more history)

(1)

3)

Graham Higman’s group
H = (a,b,c,d | b rab=a? c bc=b*d 'ed = 2 a  da = d?)

introduced in [33], has no proper normal subgroup of finite index. There is another similarity
to T'o: Using small cancellation theory, Paul Schupp proved in [63] that H is SQ-universal.
By the way, H was used to show the existence of a finitely generated infinite simple group
(take the quotient of H by a maximal normal subgroup of H), thus answering a question of
Aleksandr G. Kuros ([40]).

Meenaxi Bhattacharjee has constructed in [6] an amalgamated free product F3#p, F3 without
non-trivial finite quotients. Note that in this group there are non-trivial elements a such
that for example a? and a® are conjugate (cf. Proposition 17).

In [69], Wise gave a construction of a square complex, whose fundamental group has no
non-trivial finite quotients.

As usual, we give a table with the orders of some quotients of I" (Table 11). The infinite
quotients correspond to elements in Aj.

3.9

(8,8)-group with non-virtually torsion-free quotient

Using an idea of Wise ([69, Section II1.6]), we construct a quotient of an (8, 8)-group which is not
virtually torsion-free.

Lemma 30. (c¢f. [69, Easy Lemma I1.6.1]) Let G be a non-residually finite group and g € G an
element such that

l#gc€ ﬂ N

fi.
NG

and assume that g ¢ (9" )a for some n > 2 (equivalently: (¢")c S (9)a). Then the quotient

G/(g

"Wa is non-residually finite and not virtually torsion-free.
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[[o/qu™)r[ [ k=1]2]3] 4[5]6[7] s[oJ1o]11]12]
w=a 242 4242 4[2] 4] 2 4
a3 24 2| 42|42 42| 4| 2| 4

a3 2[4 2| 42|42 42| 4| 2| 4

s 24 2| 42|42 42| 4| 2| 4

as 2141202142002 4 2| oo

by 24 2| 42|42 42| 4| 2| 4

b 24 2| 42|42 42| 4| 2| 4

b 24 2| 42|42 4|2 4| 2| 4

by 24 2| 42|42 4|2 4| 2| 4

bs 24 2| 42|42 4|2 4| 2| 4

Table 11: Order of I'/{(w*)r, w € {a1,...,a5,b1,...,b5}, k=1,...,12, in Example 18

Proof. (cf. [69, Proof of Easy Lemma I1.6.1]) Let H < G/{g")c =: Q be a subgroup of finite
index (say of index k). Let ¢ = ¢ o m be the composition homomorphism

b G Q- 5y,

where 7 is the canonical projection and ¢ is induced by left multiplication on left cosets in Q/H
(cf. proof of Lemma 10). Since ker¢) < G and [G : ker )] < |Si| = k! < oo, we have g € ker,
hence 7(g) = g{(¢™ ) € ker ¢ < H. By assumption g ¢ {(¢")) ¢, which implies g((¢")a # 1lo. We
conclude that @ is non-residually finite. H is not torsion-free, since (9{(¢" V)" = (¢")e = 1x. O

Example 19.

—1;—-1 —1;—-1 —1;—1 —1
a1b1a2 b2 5 albgal bl s a1b3a2 b3 s a1b4a2 b4,

-1 _—1;-1 -1 _—1 -1 -1 —1;-1
arby “ay by, aiby ay ba, aiby ay b3, asbaay by,

—1;—1 —1;—1 —1;-1 —1
a3b1a4 b2 s a3b2a3 bl y (13b3(14 bd y (13b4(13 b4,

-1 _—1 -1 _—1 —1;—1 —1
a3b3 ay bg, a3b1 Ay bg, a4b2a4 bl s a4b4a4 b4

Theorem 19. Let w := asaj ‘azay . Then T'/{w?)r is non-residually finite and not virtually
torsion-free. More precisely,

wiw?hre (| N<I/(w)r
NEGT/ w2y
has order 2.
Proof. The non-residually finite complex of Example 13 embeds into X and induces a m;-injection
by Proposition 5(1), in particular
w e ﬂ N.
NYT

Note that w ¢ Ay, since pp(w)(bs) = by # by (see Figure 7).
However,

A= {wQ7 (a1a51a4a§1)2, (a1a§1a3a21)2, (agaf1a4a§1)2} C A4,
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2
AS
\ S
AR

>

by A \ AN Aby \ AN v by
> < > <
a9 aq as ay

Figure 7: pp,(w)(by) = by "

since for each a € A and b € E, we have pp(a)(b) = b and p,(b)(a) € A. Because of w? € A; and
A1 < T, we conclude that (w?)r < A; and therefore w ¢ {w?)r. Now apply Lemma 30 to the
quotient I'/{(w?)r. O

Remark. Let T’ be a (2m, 2n)-group satisfying the normal subgroup theorem (every non-trivial
normal subgroup of I" has finite index, see Proposition 9). Then every quotient of I' is obviously
virtually torsion-free.

3.10 Simplification ?

Recall Example 12 of Wise:

—1;—1 —1;—1
albgal bl s angGQ bl s

R(2,3) := albgaglbgl, a1b1a2_1b2_1,

agblaflbgl, agbgafle
Lemma 31. Let 0 : T — T, vy — b3yby ' be the conjugation by bs. Then Fix(0) = (bs).

Proof. Note that Fix(d) = {y € T : bgfybgl = 7} is the centralizer of b3 in I'. The statement
follows now from Proposition 8(1b). O

Lemma 32. [[,T] = {aia; )r and T/[0,T] = (a1, by | a1by = bray) = Z x Z.

Proof. [I',T] > ((a1a; *)r, since ajay ' = [a1,b3'] € [T, T].

Let N <iT be a normal subgroup containing aja; ' (e.g. N = ((aja;')r). Then ayN = azN,
hence alng = blalN, alng = b3a1N, alblN = b2a1N, alblN = b3a1N, a1b3N = b2a1N, i.e.
biN = boN = b3N and a1b1N = bya; N. In particular, I'/N is generated by {a1N,b;N} and
abelian, therefore [I',T'] < N. O

Conjecture 13. T' is not (bs)-separable. More specifically, ajay* is not separable from (bs) in
any finite quotient of I'.

See Lemma 34 for a possible proof of Conjecture 13. As a “corollary” we would have

Conjecture 14. I is non-residually finite with

(aray ')t 0(aray ) = [aza; *, bs] € ﬂ N.
N4r

“Proof”. This would directly follow from Lemma 27 using Conjecture 13 and Lemma 31. O
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Conjecture 15. Take

—1;— —13-1 —17-1 -1
alblaQ 52 5 albgal bl s albga2 b3 s a1b4a4 b4,
-1 -1 -1 -1 -1 -1 —17-1
aiby “asby ", a1by “ay " ba, a1by “ay b3, asbaag b7,
R(4,4) :=
agbsasb birasb sbsaz 'bst, asb;la;'b
204304, azbiaszoe, aszbza, 03, asby a, 03,
-1 —1;-1 -1 —1;-1 -1 ;-1 -1
asbs “ay by, asby ay by, asb] asb], asbrasb,

Then the corresponding I'o = Fy xp,, F7 is a finitely presented torsion-free simple group.

“Proof”. Using Conjecture 14, this would follow as in Section 3.6, because P, = Ag, P, = Ag, the
complex of Example 12 is embedded in X, and {([aza; *,b3])r = To. O

We return to Example 12 of Wise:
albgaflbfl, agbgaglbfl,

R(2,3) :=1{ ajbza; 'b3', aibiay byt

agblal_lbgl, Gngal_le_I
Lemma 33. <<[a2a1_1,b3]>>p = <<a1a2_1>>p.

Proof. We have checked it using MAGNUS ([49]). The direction ([aca] ", bs3])r < (a1a; )1 is

obvious, since [aga; ', bs] € [T, T] = (a1a5*)r (by Lemma 32). O
Conjecture 16.

() N=[r.1].

Nar

“Partial Proof”. By Lemma 32, Lemma 33 and Conjecture 14, we have

0,T] = (ara3 " Yr = ([azay s bs]hr < (1) .

fi.
N<T

How to prove Conjecture 13 ?

Lemma 34. Suppose that there is an element w € T'\ (bs) such that for each k € N we have
w € (b3){(bZ*N)r. Then T is not (b3)-separable.

Proof. Let ¢ : T' — @ be a homomorphism onto a finite group @ and let & be the order of ¢ (bs)
in Q. Then 1 is the composition of

D 25 T/ 22 T/ r 2 Q.

Hence
Y(w) = Y2 (wlb3)r) € Yar2((bs) (b3 Nr) = Y ((bs))
and T' is not (bs)-separable. O

Question 4. Is it true that ajay ™ € (b3) (b3 ) for all k €N ?
Remarks. (1) (0i)r # (W4)r, if i # j and 7,5 € N, since (T'/{(bi)r)* = Z x Z;.

(2) ajay’ € (b3F)r if and only if T/{(b3*)r is abelian. This follows from Lemma 32. Using
MAGNUS ([49]): T'/{(b§)r is not abelian, in other words aja;* ¢ (b§)r.
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3.11 Project: simple and property (T)

Assumption. Let I'p be the non-residually finite group of Theorem 13 and w := agal_lagazl.
We assume in this section that I'p embeds either in a (A, Py)-group I' such that P, is quasi-
primitive, not 2-transitive, or in a (P, A2,)-group I' such that P, is quasi-primitive, not 2-
transitive. Moreover, we assume that [T : {w)r] < oo (the easiest case would be {w))r = T'g) and
that pr;({w)r) is locally quasi-primitive, i =1, 2.

Lemma 35. Let G be a finitely generated group and N <G (N # G) a proper normal subgroup.
Then there is a maximal proper normal subgroup M of G containing N, i.e. N < M <G, M # G,
and M S M QG always implies M = G.

Proof. Let G = {go,¢1,-..} be an enumeration of G. We define Ny := N and for k =1,2,3,...

) Nk, if (Ne-1,9k-1))c¢ =G
ko=
(Nk—1,9k-1))c, if (Ne—1,9k-1))c # G
and finally
M= | N
keNy

Then obviously M is a normal subgroup of G containing N. Let {hi,...,h} be a finite set
generating G. Assume that M = G. Then h; € M, i = 1,...,l, hence h; € N, for some k;
and {h1,...,l} C Nmax{k;},_,. - But this implies Nyax(x,},_, , = G, which contradicts the
construction, thus M # G. It remains to show that M is “maximal”. Let M be a group such that
M S M <G. Take an element § € M \ M. Then § = g; for some j € No. We have g; ¢ M, in
particular g; ¢ Nji1, hence by definition of Nji1: (N}, g;)¢ = G. But M < G contains N; and
g;, therefore M=G. O

Remark. We do not know a reference for this well-known lemma, but Bernhard H. Neumann
showed in [54, Theorem (5)] that in a finitely generated group G every proper subgroup of G is
contained in a maximal proper subgroup of G.

Proposition 36. Let N be a non-trivial proper normal subgroup of {w))r. Let M be a mazimal
proper normal subgroup of (whr containing N (use Lemma 35 to guarantee the existence of M ).
If pr;(M) £ QZ(pr;({whr)), i = 1,2, then (w)r/M is an infinite simple group having property
(T).

Proof. First note that

(whr= () N
N'GT
and ((w))r has no proper subgroups of finite index, hence {w))r /M is infinite. This group is simple
because of the maximality of M. To show that {w))r/M has property (T), apply [16, Proposition
3.1], using [15, Proposition 1.2.1] and [15, Lemma 1.4.2]. O
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4 More examples of (2m, 2n)-complexes

This section contains a collection of various (2m, 2n)-complexes, illustrating some additional inter-
esting phenomena not discussed in Section 2 and 3. For instance, we try to examine the relation
between local properties of I and (ir)reducibility of T'.

4.1 Local groups vs. irreducibility

We start with two examples which look very similar, because they have for example exactly the
same local groups P, and P,, but Example 20 is irreducible, whereas Example 21 is reducible.
Moreover, Example 20 exhibits some other remarkable properties.

Example 20.
alblal_lbl_l, albgaflbgl, a1b3a2_1()2_1,

R(3,3) := a1b§1a2b2, agblaglbfl, a2b3a2b51,

agbflaglbl, agbgaglbgl, agbgaglbgl
Theorem 20. (1) P, = Ag, P, & Zs < Sg and T is irreducible.
(2) Ha(zy) is a pro-2 group.
(3) Ax # 1, in particular QZ(Hz) # 1.
(4) {ay,as,a3) = pry((ar,az,as)) = pry((ay,az, as))(x,) = pro(L)(2,) < Aut(72,)(2,) stabilizes
pointwise a bi-infinite geodesic in Ta, = Tg through x,.
(5) T =72 x Zsy, in particular it is an infinite group.
Proof. (1)
pu(b1) = (2,3)(4,5),
pu(b2) = (1,2,5),
pu(bs) = (2,6,5),

Ph(al) = (27 3)(45 5)7
ph(a2) = (27 3)(45 5)7
pr(az) = ().

To see that I is irreducible, compute |P}(LQ)| = 360 - 605.
(2) This follows directly from the subsequent Proposition 37.

(3) {b%,b3,b3} C Ay. For example b? € Ay, since b3 commutes with each element in Ej (see
Lemma 26(1b)). Note that Ay is a normal subgroup of (b1, ...,by,) of infinite index, since T’
is irreducible. In particular, A5 is a non-finitely generated free normal subgroup of T'.

(4) The map pr, is injective because QZ(H;) = 1 by Proposition [15, Proposition 3.1.2]. This
gives the first claimed isomorphism. The two other isomorphisms are based on the identifi-
cation

(a1,a2,a3) = {y €T : pry(y)(z0) = 20}
proved in [16, Chapter 1]. Since pp(a)(b1) = by for each a € Ej, the bi-infinite geodesic
(bY) ez through z, is fixed.
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(5) This is an easy computation.
o

Proposition 37. Let I be a (Pn, P,)-group with |P,| = 2. Then Hz(z,) is a pro-2 group (an
infinite group if and only if T is irreducible).

Proof. Consider the commutative diagram, where py, is the restriction map, £ € N.

k+1
ﬂ§L+)

<a17 ey am> — = P7j(k+1) < Sym(Efjk—H))

R ipk
Py

P < Sym(E{")

We want to show that P\* is a 2-group for each k € N. Since |Py| =2 and PR = Pv(k+1)/ker(pk),
it is enough to show that ker(pg) is a 2-group (or trivial). This follows, if any element o € ker(py)
has order 1 or 2 in P**Y. Given o € ker(pg), write o = pglkﬂ)(a) for an appropriate element a
in {aj,...,am). Let b be any element in B Decompose b = b - b, with b’ € Eq(,k), b' € E,

and define @ := p{|"" (t/)(a) (see Figure 8). Then

v'A 3 3 : : N4
a a

b'A N4 4
a a

Figure 8: Illustration in the proof of Proposition 37

o2(0) = oV @) 6 Dy @) ) o v =,
where the equation (%) uses the commutativity of the diagram above and (xx) follows from the
assumption |P,| = 2. O

The following conjecture is true at least for k < 6, i.e. we have computed |Py(2)| =4, |Pv(3)| =16,

P{V] =32, |P{Y| =128, |P¥| = 256.

Conjecture 17. For I' defined in Example 20 and | € N

3l—1 _
PO 2311 | =9
! 231-2 =292l —1.
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The next example has seven (of nine) geometric squares in common with Example 20. The
two different geometric squares are underlined. They can be obtained from the corresponding
two geometric squares aszbaaz 1b2_ L azbzas lbg 1'in Example 20 by a single “surgery” operation
indicated in Figure 9. For a more general description of surgery techniques in square complexes,
see [16, Chapter 6.2.2].

Example 21.
alblal_lbl_l, albgaflbgl, a1b3a2_1()2_1,

R(3,3) :={ aibylasby, asbiaz'byt, asbsazby’,

-1 _-1 —1;-1 —1;—-1
agbl Qg bl, a3b2a3 b3 5 a3b3a3 bQ

Theorem 21. (1) P, = Ag, P, & Zs < Sg, but T is reducible.

(2) In general, it is not possible to determine whether a given (2m,2n)-group is reducible or
irreducible only by knowing the local groups Pn and P,.

Proof. (1)

We compute |P}§2)| = 360 = | Py, hence T is reducible by Proposition 1(2a). Observe that
|P1§k)| =2 for all £k € N.

(2) Example 20 and Example 21 have exactly the same local groups P, and P,, but Example
20 is irreducible, whereas Example 21 is reducible.
O

4.2 Another small irreducible example with QZ # 1
We present another example with QZ(Hsz) # 1, but in addition to Example 20, P, will be transitive.

Example 22.
alblaflbgl, albgagbl_l, albglaglbl,
R(3,2) :=
a2b1a3b1, agbgagbl_l, a2b51a3b2_1

Theorem 22. (1) P, =& Ag, P, = Dy < Sy is transitive.
(2) T is irreducible.

(3) QZ(Hz) # 1.
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bg A A bg bg A A bz
a3 a3
% %

bg A A bg bg A A b3
a3 ? a3

Figure 9: “Surgery” on Example 20 (on the left) to get Example 21 (on the right)

Proof. (1)

pv(bl) = (1;472a573>a
pﬂ(bQ) = (2’4765375))

ph(a/l) - (15 2)(374)5
Ph(a2) = (]-; 2,3, 4)7
ph(ag) = (]., 2, 3, 4)
(2) T is irreducible by Proposition 1(1a), since |P}52)| = 360 - 60°.
(3) Using Lemma 26(1b), B := {(b1b2)3, (bab1)?, (b1b2) 72, (bab1) ™2} C As, since for each b € B
and a € Ejp, we have p,(b)(a) = a and pp(a)(b) € B.
(]
4.3 Reducible but |P,£3)| < |P,E4)|
We construct now a reducible lattice I' < Aut(73) x Aut(Zg), where P,Ek) “stops late”.

Example 23.
alblaflbfl, a162a;1b2a

R(Q, 3) = albgalb??l, a2b1a2b2_1,

a2b2a2b§1, agbgagbfl
Theorem 23. (1) P, = Z% < Sy, P, =27y x Ay < Sg.

(2) T is reducible, but |Pp| < |P}§2)| < |P}§3)| < |P}E4)|.
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Proof. (1)

Ph(a1) = (275)a
ph(ag) = (1,3, 2)(4,6, 5)

(2) T is reducible, since |P,| = |P7j(2)| = 24. A computation gives |P}(LQ)| = 8§, |P}(Lg)| = 16,
PV =32(= 177,

O
4.4 Reducible but |P,| < |P}(LQ)| and |P,| < |P1§2)|
We give a reducible (4, 6)-complex such that |Pp| < |P}§2)| and |P,| < |Py(2)|.
Example 24.
arbra; by, arbgay thyt,
R(2,3) :={ aibza; by, asbiay byt
a2b2a51b1, agbgagbgl
Theorem 24. (1) |Py| < |P”| and |P,| < |P).
(2) T is reducible.
Proof. (1) We compute |Pp| = 2, |P,52)| =4, |P,| =24, |P7j(2)| = 48.
(2) This follows from |P1§3)| =48 = |P1§2)|. Note that |P}53)| = |P,§4)| = 8.
O

4.5 Local transitivity vs. reducibility

The next two examples shall illustrate, that there is no obvious connection between reducibility
and local transitivity.

Example 25.
alblal_lbl_l, a1b2a1_1b§1,

R(2,3) =1 aibsay'by!, aiby'ay'bs,

—1;—-1 —1;—-1
agbla2 bg s angGQ bl

Theorem 25. (1) P, =72 < Sy, P, = S3 < Sg, both are not transitive.
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1P| P
k=1 1 6
k=2 32 48
k=3 128 192
k=4 | 1024 | 1536
k=5 | 8192 | 12288
k=6 | 65536 | 98304
Proof. (1)
pu(b1) = (),
pu(b2) = (1,2),
pv(b3) = 374 >

Ph(al) = (273)(45 5)7
ph(ag) = (1,2,3)(4,6, 5)

(2) Computation.

Conjecture 18. Let I' be as defined in Example 25. Then

(1) pv((blbg)Qk)(wk(a)) = wi(a), where w(a) is any reduced word in {a1,az2) of length k € N.

(2) po((b1b2)?") (@) = akay for k € N.

It would directly follow from this conjecture that I' is irreducible.

Remark. It is easy to construct an irreducible (P, P,)-group with P}, and P, both not being
transitive. For example embed any irreducible (2m, 2n)-complex into a (2m + 2, 2n + 2)-complex
by adding the m + n 4+ 1 geometric tori albn+1af1b;_,’l_17 .

explicit realization of this idea.
Conversely, we have the following example:

Example 26.
arbray by,
R(2,2) :=

—1
a1b2a2 bg,

—1 —1
a162 albl s agblagbg

Theorem 26. P, and P, are transitive, but I" is reducible.

Proof.

pv(bl) = (1;473a2)7
pv(b2) = (1;473a2)7

pr(ar) = (1,3,2,4),
ph(ag) = (1,4,2,3).

I" is reducible, since |P}52)| = |Py| = 4.
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Question 5. Is there a reducible (Pp, Py,)-group T' with Py, transitive and P, 2-transitive?
Question 6. Is there a reducible (P, P,)-group T with Py, transitive and P, primitive?

Question 7. Is there a reducible (Py, P,)-group T’ with Py, transitive and P, quasi-primitive?

4.6 Irreducible but A; #1, As # 1

It follows from [16, Proposition 1.2] that any reducible (2m,2n)-complex satisfies Ay # 1 and
As # 1. Embedding the irreducible complex of Example 22, we construct now an irreducible
(8,6)-complex such that A; # 1 # As.

Example 27.

—1p—1 —-1 —1p—1 -1 -1
arbiai by, aibaasbi, arbsay by, aiby az by,

R(4, 3) = agbla3bl, a2b2a2();17 agbgaglbgl, agbglagbgl,

a3bga3_1()§1, a4blazlbl_1, a4bga2162_1, a4b3azlb§1
Theorem 27. (1) Py, P, are not transitive.
(2) T is irreducible.
(3) A1 £1# As.
Proof. (1)
pu(br) = (1,6,2,7,3),
pu(b2) = (2,6,8,3,7),

pr(a1) = (1,2)(5,6),
pr(az) = (1,2,5,6),
pr(as) = (1,2,5,6),
pr(as) = ().

(2) The irreducible complex of Example 22 is embedded in X, indicated by the six underlined
relators. Now apply Proposition 5(3).

(3) a4 € Ay, bg € Ay, applying Lemma 26(1b).

4.7 Local groups and transitivity

Examples 28 and 29 have pairwise isomorphic local permutation groups P, and P,, but on both
sides different transitivity properties. The reason for this is that they are isomorphic but not
permutation isomorphic.

Example 28.

alblal_leI, a1b2a2_1b3_1,
R(2,3) :=1{ aibzay 'b;?, alb??la;lbla

-1 -1 -1
a162 (22} bg, agbla2 bQ
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Theorem 28. P, = Z% < S4 is not transitive, P, = Zy X Ay < Sg is transitive.
Proof.

pv(bl) = (172)a

p’U(b2) - (374)5

p’U(b3) = (17 2)(35 4)7

pr(a1) =(1,3,2)(4,5,6),
ph(a2) = (17352765475)'

O
Example 29.
a1b1a2_1b2_1, a1b2a2_1b2,
R(2,3) := (¢ ajbsasbs, a1b§1a2b§1,
arby tay b7t arby tay thy
Theorem 29. P, = Z% < Sy is transitive, P, = Zy X Ay < Sg is not transitive.
Proof.
pv(bl) - 172 3) )7
pv(b2) - ]-7 2 ) )
pv(b3) = 73 s E)y
ph(al) - (L 572)(35 )7
Ph(a2) = (2; 57 6 ;
O

4.8 Irreducibility and finite abelianization

A maive conjecture could be: I' is irreducible if and only if I'?" is finite. In Theorem 20 we
have seen that one direction of this conjecture is false, i.e. there is an irreducible I' with infinite
abelianization I'®*. The other direction is false by the following example:

Example 30.
alblal_lbl, a1b2a1b2_1,
R(2,2) :=
a251a25;1, agbgaglbg

Theorem 30. T is reducible, but T'® is finite.

Proof. |Pr| = |P}52)| = 4 shows that T is reducible. A simple computation gives ['** = Z3 of order
16. o

Remark. If we add to the non-residually finite (4,12)-complex of Example 8 the two geometric
tori a1b7af1b;1, agb7aglb;1, we even get a non-residually finite (4,14)-group I' with infinite
abelianization T'’. Also Example 13 has this property.

Question 8. Is there a (2m,2n)-group T such that Py, P, are transitive and ' s infinite?
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4.9 Applying a criterion for irreducibility and non-linearity from [16]

We give here examples of small irreducible non-linear (2m, 2n)-groups I, where both P, and P,
are not alternating groups, applying results from [16].

Definition. Let x; be any vertex in 73, and
P > Hy(2,)/Hy(S(x1,2)) < Sym(S(zn,2))

as introduced in Section 1. Let y; be any neighbouring vertex of xp. Then we define (see [16,
Chapter 1])
K = Stabth (S(l‘h, ].) U S(yh, 1))

In our applications, this definition is independent of the choice of y,. See Appendix D.4 for the

GAP-program ([28]) computing K}, for m = 3. Analogously, one defines the group K, < P( )

The following result is taken from [16]:

Proposition 38. ([16, Proposition 1.3, Theorem 1.4]) Let T be a (2m,2n)-group such that Py
and P, are primitive permutation groups. If either Ky, or K, is not a p-group, then I is irreducible
and not linear over any field.

Remark. There is no (4,4)-group satisfying the assumptions of Proposition 38.

Remark. If m > 3 and T is an irreducible (As,,, P,)-group, i.e.

A 2m
7] = o (152

2m
by Proposition 1(1a), then K}, is not a p-group. More precisely
|Kn| = [Agm [

We apply now Proposition 38 to a (4,6)-group which is moreover a candidate for having a
simple subgroup of index 4.

Example 31.
a1b1a1 b21, a1b2a2 bl 1,

R(Q, 3) = albgaglbl, alb§1a2b3,

a1b2_1a2_1b3_1, a2b1a2_1b2
Theorem 31. (1) P, 2 PGLy(3) 2 Sy, P, = Si.
2) |K,| = 12441600000 = 214 - 35 . 55,
3) T is irreducible and not linear over any field.
5) Zr(bs) = Nr((bs)) = (bs).

(2)
(3)
(4) [[,T] =Ty and Ty is perfect.
(5)
(6) Aut(X) = Z.
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Proof. (1)

pu(b1) = (1,2),
pu(b2) = (3,4),
pu(bs) = (1,2,4,3),
pn(a1) = (1,2)(3,5,6),
pn(az) = (1,4,2,6,5).

(2) GAP ([28]).

(3) By Proposition 38.

(4) GAP ([28]).

(5) This follows from Proposition 8.

(6) GAP (128]). Aut(X) is generated by

(a1,az,by,b2,b3) —

(a’1_17 a2_17 an bla b3)

Conjecture 19. I' is non-residually finite such that

(] N =To.

N4r
Question 9. Is 'y simple?
Example 32.
alblaflbgl, albgaflbgl,
_ -1 -1 -1
R(2,3) = a1b3a2 bl, a1b3 a2b1 y
asbiasby ', asbrasbs
Theorem 32. (1) P, = PGLQ( ) 54, v = PGLQ( ) < Sg.

) || = 50000 = 24 - 55.

4) [0,T] =T, T§" = Zy, T/[To, Ty
) Zr(a,l) Np((ai)) = (ai>, z'fai S {al,ag}.
(6) Aut(X) = Zs.
Proof. (1)
Pv(bl) =
pv(b2) =
pv(b3) =
prlar) =
pr(az) =

(2
(3) T is irreducible and not linear over any field.
(
(5

> Dy and [To, D] is perfect.

(17 3’ 2)7
(2,3),
(2,4,3),

(174’ 57 6) 37 2))
(1,4,2)(3,6,5).
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6) GAP ([28]). Aut(X) is generated by

(a17a27b17b2;b3) = (a17a2_17b1_17b2_1’b3_1)'

Conjecture 20. I' is non-residually finite such that

ﬂ N = [[g, To].
NG
Question 10. Is [['g, ] simple?
Example 33.
alblaflbgl, albgaglbgl, albgaglbl
R(3,3):=1{ aibztaz'bs, aibylay by, asbiay byt
Gngaglbgl, a3bla3bg, a3b§1a3b;1

Theorem 33. (1) P, = PSLQ( ) < Sg, P, & PSLQ( ) < Sg.

(2) |K,| = 100000 = 25 - 5.
(3) T is irreducible and not linear over any field.
(4) [,T) = Ty and Ty is perfect.
(5) Zr(bs) = Nr((b3)) = (bs)-
(6) Aut(X)=Z3.
Proof. (1)

pv(bl) = (172)(3’4)7
pv(bQ) = (374)(5’6)7
pv(b3) = (17253)(47& 5)7

Ph(al) = (17 5; 67 3; 2)7
ph(a‘Q) = (17 4; 57 6; 2)7
pn(asz) = (1,5)(2,6).

(2) GAP ([28]).

(3) By Proposition 38.

(4) GAP ([28)).
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(5) This follows from Proposition 8.
(6) GAP ([28]). Aut(X) is generated by the two automorphisms

-1 3—1 ;—1
(a17a27a/37b17b2)b3)’_>(a/27a/17a/37b1 7b2 )b3 ))

—1 —1 —1 —1
(a17a27a37b17b2;b3)'_’(a2 , a1, 05 7b2;b1ab3 )

Conjecture 21. T is non-residually finite such that
(] N =To.
N4ar

Question 11. Is 'y simple?

4.10 Two very small (irreducible?) examples

Finally, we give two interesting small examples whose properties are not known very well so far.

Example 34.
alblaflbgl, albgaglbl,
R(2,2) :=
a2b1a2b2, albglagbfl

Theorem 34. (1) P, = A4, P, = Dy, the dihedral group of order 8.

(2) QZ(Ha) #1.
(3) T =272 x Zs, [[,T)% =2 Z x 72, T3 =2 7 x Zs.
(4) T has a quotient Zo * Zo.

(5)

[ ﬂ N] = oc.

(6) T' has finite quotients PGL2(7), PGL2(11), PGL2(13), PGL2(17), PSL2(19), PSLy(23),
PSL2(29), PSLy(43), PSLy(47), PSL2(53).

Proof. (1) pu(b1) = (1,3,2), py(b2) = (2,4,3), pr(a1) = (1,3,4,2), pr(az) = (1,3)(2,4).

(2) B := {b3,b3,b53,b7°} C Ay, since for each b € B and a € Ej, we have p,(b)(a) = a and
pn(a)(b) € B.

(3) This is an easy computation. Note that a method for trying to show that a group is infinite,
is to find a (finite index) subgroup with infinite abelianization.

4) For example I'/ {2\ = Zs % Zo, since
( ) p 2 9
(a1,az,by,bs | a1b1a1_1b2_1, a1b2a2_1b1, asbiazbs, a1b2_1(12b1_1a a3) =

—1 —1 —1 —1 -1 2
<a1, as, bl, b2 | b2 = a1b1a1 ,a1 = bl a2b2 = ag, a1b2 a2b1 ,a2> =
2 —2 2 -1 2;-2 2
(a1,b1 | afbray “by,a1biaibiay —, aiby =, af) =

(a1,by | a%,bf> >~ 7o % Zo.
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(5) |T/{a3, [a1,b1]™)r| = 4m, since
(ar, bu™ 4 (a1, ba]) < (a1, by | a2,b2) = T/{a2)r.

(6) quotpic ([59])

Conjecture 22. (1) T is irreducible. We have computed

77| 1P

k=1 12 8
k=2 324 32
k=3 8748 128
k=4 236196 1024
k=5 6377292 8192

k=6 172186884 | 65536
k=17 | 4649045868 | 524288

(2) T is residually finite.

(3) QZ(Hy) = 1.

See Table 12 for the orders of some quotients of I'. The infinite quotients in this table which
do not correspond to elements in Ag, are recognized by MAGNUS ([49)]).

o/ Qe k=1 2] 3[4] 5] 6] 7[8] 9]10]
w=ap 6 | oo 6 | oo | 750 oo | 146160 | oo | 2147040 | oo
as 2| o0 150 | oo 2 oo | 158928 | oo | 1026000 | oo
b1 2| 0o | 00(QZ) | oo 2 | 0o(QZ) 2] 00| 00(QZ) | oo
by 2| oo | o0(QZ) | 2 | 00(QZ) 2| o0 | o0(QZ) | oo

Table 12: Order of I'/{(w*)r, w € {a1,az,b1,b2}, k=1,...,10, in Example 34

Example 35.
a1b1a§151, arbaasbs,
R(2,2) :=
a2b1a2b2_1, albl_lalbg_l

Theorem 35. (1) P, =S54, P, = S;.
(2) T =72 x 73, [[,T]% 2 73 x Zy, T2 2 72 x Zy.
(3) T has finite quotients PGL2(9), PSLy(27).

Proof. (1) pulbr) = (1,4,3,2), pulb2) = (1,4,2,3), pu(ar) = (1,3,2,4), pulaz) = (1,4,3,2),
(2) Easy computation.

(3) quotpic ([59])
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Conjecture 23. (1) T is irreducible. We have computed

1P| 1P

k=1 24 24
=2 648 648
k=3 17496 17496
k= 472392 472392
k=5 12754584 12754584
k= 344373768 344373768
k=17 19298091736 | 9298091736

(2) T is residually finite.
(3) QZ(H:) = QZ(Hz) = 1.
(4)

(5) Any non-trivial normal subgroup of T' has finite index.

See Table 13 for the orders of some quotients of I'.

O/ qwhefl[k=1] 2] 8] 4] 5] 6] 7] 8]
w=a 6 | 24 | 162 | 48 | 4320 | 17496 | 117936 | 17280
w = a 6 | 24 | 162 | 48 | 4320 | 17496 | 117936 | 17280
w = by 6 | 24 | 162 | 48 | 4320 | 17496 | 117936 | 17280
w = b, 6 | 24 | 162 | 48 | 4320 | 17496 | 117936 | 17280

Table 13: Order of I'/{w*)r, w € {a1,az2,b1,b2}, k =1,...,8, in Example 35

4.11 Maximal P}(LQ), PP

Example 36.
alblal_lbl_l, albgaflbgl, a1b3a2_1b3_1,

R(3, 3) = a1b§1a§1b3, agblaglbgl, agbgaglbl,

-1 -1 -1
a2b3a3b1 s a2b2 a3b3 5 a3b1a3b2

Theorem 36. (1) P, = Sg, P, = Se,

PP| = PP =720 1208,
(2) ‘P}gg)‘ and ‘qus)‘ are not maximal, i.e. smaller than the corresponding groups of the local
action of Aut(7g) on Ts.
Proof. (1) We have computed it with GAP ([28]), using the programs of Appendix D.4.

2) [P] =

PLSS)’ = 720 - 120° - 1203°/64 again using GAP ([28]).
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4.12 Local groups of I,

Our definition of P,Ek), Py(k) for (2m, 2n)-complexes fits in the definition of local groups for more
general square complexes given in [16, Chapter 1]. In this more general context, local groups are
defined for each vertex of the complex. The next three examples have the same Py, P, P}Ez), 52),
but different local groups for Xg, denoted by Py(Xp), Py(Xo). These groups do not depend on

the four vertices of Xy in the following examples.

Example 37.
alblaflbfl, a1b2a51b§1, albgaglbg,
R(3,3) =1 aibylaz'by', aibylaz'bs, asbiasby,
agbgagbl_l, a2b3a3_1b3_1, a3b2_1a3b1_1

Theorem 37. (1) P, = P, = PGLy(5) and |[P{”| = |P{*| = 15000.

(2) Pu(Xo) = PGLy(5), Py(Xo) = PGLy(5).

Proof. GAP O
Example 38.
alblal_lbl_l, alea;Ibgl, a1b3a3_1()2,
R(3,3) := albglagbgl, a1b51a2b3, agblaglbfl,
asbsasby, agbglaglbgl, agbflagbg

Theorem 38. (1) P, = P, = PGLy(5) and |P{”| = |P{*| = 15000.
(2) Pu(Xo) = PSLy(5), Py(Xg) = PGLy(5).
Proof. GAP O

Example 39.

—1;—1 —1;—1 -1
arbia; by, aibaas b3, a1bsaz b,
e —1 —1 —1 —1;—1
R(3,3) = a1b3 a3b2 s a1b2 a2b3, a2b1a3 b3 ,
-1 —1;-1 -1
a2b2a3b1, a2b3 Qg bl 5 agbl a3bg

Theorem 39. (1) P, 2 P, = PGLy(5) and |P”)| = |P{?| = 15000.
(2) Pn(Xo) = PSLy(5), P,(Xo) = PSLy(5).
Proof. GAP O
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5 Quaternion lattices in PGLy(Q,) x PGL2(Q))

5.1 Some notations and preliminaries

We first define quaternions over a ring (see e.g. [22, Chapter 2.4]).

Definition. Let R be a commutative ring with unit. Then the Hamilton quaternion algebra over
R, denoted by H(R), is the associative unital algebra defined as follows:

e H(R) = {x = x0 + 217 + x2j + x3k | x0, 21, 22,3 € R} is the free R-module with basis 1, 4,
7, k.

e 1 =1+ 0i+ 05 + 0k is the multiplicative unit.
o i2=j2=k>= 1.
o ij=—ji=k, jk=—-kj=1i, ki=—ik=]j.
This gives the multiplication rule
(o + @19 + 2] + 23k) (Yo + y1i + y2J + y3k) = Toyo — T1y1 — Tay2 — T3Ys3
+ (oY1 + 1Yo + T2y3 — T3Y2)i

+ (Toy2 — T1Y3 + TaYo + T3Y1)J

+ (zoys + T1Y2 — T2y1 + T3Y0) K-
For a quaternion x = xg + 11 + 22j + 23k € H(R), let T := 29 — x17 — 22 — w3k be its conjugate,
|z|? = 27 = Zx = 23 + 27 + 23 + 23 its norm, and Re(x) := o its “R-part”. Note that
lzy|? = |z|?|y|?. We divide quaternions z € H(Z) with odd norm |z|? into eight classes (and say
that these quaternions have type og, 01, 02, 03, €g, €1, ea or e3) according to Table 14. We say

xz i) X1 T I3

type og | odd even even even
01 | even odd even even
0o | even even odd even
o3 | even even even odd
e | even odd odd odd
er | odd even odd odd
ey | odd odd even odd
e3 | odd odd odd even

Table 14: Types of integer quaternions x with odd norm |x|2.

that = has type o if it has type og, 01, 02 or 03. Note that x has type o if and only if |z|? = 1
(mod 4).

If R is a ring with unit (denoted by 1), let U(R) be the group of (left and right) invertible
elements in R, i.e. elements x € R such that there are y1,y2 € R satisfying y1x = xys = 1. Note
that then y; = y2. This element is uniquely determined by € U(R) and is usually written as

z~ L

Lemma 39. Let R be a commutative ring with unit. Then

U(H(R)) = {z € H(R) : |z|? € U(R)}.
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Proof. “2” Take 27! = (|z|?)~z.
“C” Let z € U(H(R)) and y := 27, then 1 = |zy|? = |2?|y|? = |y|?|z|?, i.e. |z|*> € U(R). O

Lemma 40. Let R be a subring (with unit) of C, then
(1) {x eH(R) : 2y =yx, Vy e H(R)} = {x e H(R) : x = T} = {x € H(R) : z = Re(x)}.
(2) ZU(H(R)) = {z € U(H(R)) : = = Re(z)} = U(H(R)) N ZU (H(C)).

Proof. (1) We prove the first equality, the second one is obvious. Let @ = xg+ 211+ 22j + 23k €
H(R). If z = Re(z) (i.e. 1 = x2 = 23 = 0), then clearly zy = yx for all y € H(R). For the
other direction, suppose that xy = yx for all y € H(R). Taking y = 7, the condition xi = iz
is equivalent to

—x1 + 2ol + x3) — w2k = —x1 + TP — T3] + T2k

and it follows x9 = x3 = 0. Taking y = j, we conclude in the same way x; = z3 = 0, thus
Tr = Zg-

(2) We can use the same proof as in (1), since i(—i) = j(—j) = 1, i.e. i,j € U(H(R)).

Remark. The case R = Z, is different:
ZU(H(Z2)) = U(H(Z2)) # {x € U(H(Z2)) : © = Re(x)} = {1}.

Lemma 41. Let R be a commutative ring with unit. Let x = xo+x11+ x2j + 23k, y = yo + Y14 +
yoj +ysk, 2 = 20 + 210 + 227 + 23k € H(R). Then

(1) zy = yx if and only if 2(z2ys — x3y2) = 0 and 2(x3y1 — x1y3) = 0 and 2(z1y2 — 22y1) = 0.

(2) 2y = —yz if and only if 2(xoyo — x1y1 — T2y2 — x3y3) = 0 and 2(xoy1 + x1yo) = 0 and
2(zoy2 + w290) = 0 and 2(zoys + x3y0) = 0.

(3) Suppose that R is a subring of R with unit, xo # 0 and vy = —yx. Then y = 0.

(4) Let R be a subring of R with unit, x # xo, vy = yx and xz = zx. Then yz = zy, in
particular U(H(R)) is commutative transitive on non-central elements.

Proof. (1) and (2) are elementary computations using the multiplication rule for quaternions.

(3) Using (2), we have zgyo — 1y1 — Tay2 — x3ys = 0 and

—Z1Y0 —Z2Yo —Z3Yo
Y1 = y Y2 = , Yz = .
o o X0
It follows
xiyo | T3yo m%yo
ToYo + + + =0,
Zo Zo Zo

i.e. yo|z|? = 0. Since |z|?> > 22 > 0, we conclude yo = 0 which implies y; = 0, y2 = 0 and
y3 =0, 1e. y=0.

(4) By (1), we have to prove y2z3 = yszo, ysz1 = yi123 and Y122 = y221. We only prove
here y129 = y221, the other two computations are completely analogous: If zo = 0, then
21y2 = x2y1 = 0 and z3y2 = x2y3 = 0. This implies y2 = 0 (otherwise 1 = z3 = 0 and
x = xp). Moreover, we have 2125 = 2221 = 0 and 329 = 2223 = 0, which implies zo = 0.
So, we conclude that y129 = 0 = y221. Assume now that xs # 0, then yy2o = %yng = Ya21,
USiIlg T2Y1 = X1Y2 and To2Z1 = X1%2.

O
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Throughout this chapter, let p and [ be two distinct odd primes. Then
Z[1/p,1/1] := {0} U {tp"l® : r,s,t € Z;t # 0; t,p and t,l are relatively prime}

is a subring of QQ, containing Z.

Let (%) be the Legendre symbol. This means that (%) := 1, if p is a quadratic residue modulo
, i.e. if the equation #2 = p (mod [) has an integer solution, and (}) := —1, otherwise. See Table
15 for some examples. The definition of the Legendre symbol can be generalized to non-prime
numbers, but we do not need it here.

Let K be a field, K* = K \ {0} = U(K) the group of invertible elements and GL2(K) the
group of invertible (2 x 2)-matrices with coeflicients in K. We denote by PGLy(K) the quotient

group
A0

PGLy(K) = GL2<K>/{< o

> : A€ KX} = GLy(K)/ZGLa(K).
If A is a matrix in GLy(K), we write

(4] = A{( 3 g > . A€ K*} € PGLy(K)

for the image of A under the quotient map GL2(K) — PGLy(K).
We denote by SLa(K) the kernel of the determinant map det : GLo(K) — K> and by PSLy(K)
the quotient group

PSLy(K) = SLQ(K)/{( S S ) te = +1} = SLy(K)/ZSLy(K).

PSL2(K) can be seen as a subgroup of PGL2(K) via the injective homomorphism

PSL,(K) — PGLs(K)
A{( ‘ 2 > o= 41} [A],

where A € SLy(K).

For ¢ prime, we write GLa(gq), PGL2(g), SL2(gq), PSLa(q) instead of GL2(Z,), PGL2(Z,),
SL2(Zq), PSL2(Z,). We want to emphasize that Z, stands for the finite ring (field) Z/¢Z (as in
all other chapters) and not for the g-adic integers.

Lemma 42. Let K be a field and B € GLy(K). Then [B] € PSLy(K) < PGLy(K) if and only if
detB € (K*)?:={k*: ke K*}.

Proof. Note that [B] € PSLa(K) if and only if there is a matrix A € SLy(K) such that [A] = [B] €
PGLy(K), i.e. if and only if there is a matrix A € SLa(K) and an element A € K* such that

A0
B 'A= .
To prove the statement of the Lemma, we first assume that [B] € PSLy(K). Then (with A and A

as above)
detB =detA- A2 =\"% ¢ (K*)%

To show the other direction, assume that detB = k2 for some k € K*. If we choose
oo
A:=B
< 0 k! ) ’
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then A € SLy(K), since detA = k% - k=2 = 1, and we have
k0
14 _
(50,

Lemma 43. Let p,l be two distinct odd primes. Then p+1Z € (Z,)* if and only if (?) =1.
Proof.
p+I1Z € (Z))? & Jz +1Z € Z; such that (z +1Z)* =p+1Z
o 3Jze{l,...,1—1} such that 2> +I1Z =p +1Z
& 3re{l,...,1—1} such that 2°> = p (mod 1)
< Jx € Z such that 22 = p (mod 1)

-(3)-

The next lemma gives some old results which are well-known in number theory.
Lemma 44. Let p be an odd prime and s an odd natural number.
(1) (Fermat, Euler) p is a sum of 2 squares if and only if p=1 (mod 4).

(2) (Gauss) Assume that p = 3 (mod 4). Then p is a sum of 3 squares if and only if p = 3
(mod 8). More generally, s is a sum of 3 squares if and only if s is not =7 (mod 8).

(3) (Jacobi) p has exactly 8(p+ 1) representations as a sum of 4 squares p = x2 + 3 + 23 + 2%;
Zo, X1, T2, x3 € Z. For each such representation, three integers in {xg, 1,2, T3} are even,
if p=1 (mod 4), and three integers are odd, if p =3 (mod 4). It follows that

{z € H(Z) : |z|* =p =1 (mod 4), = has type o}| = 8(p + 1),
{x € H(Z) : |z|* = p=1 (mod 4), = has type oo}| = 2(p + 1)
and
Hx € H(Z) : |z|* =p =1 (mod 4), = has type oy, Re(x) > 0} =p + 1.
Let p be an odd prime. The following lemma applies for example to the finite field Z,, the
field of p-adic numbers Q,, and algebraically closed fields like C, but not to Zo and subfields of R.

Lemma 45. (see [22, Propostion 2.4.2]) Let K be a field, not of characteristic 2, and assume that
there exist c,d € K such that ¢ +d? +1 = 0. Then H(K) is isomorphic to the algebra Ma(K) of
(2 x 2)-matrices over K. An isomorphism of algebras is given by

H(K) — M»(K)

2o+ x1c+ x3d —xz1d+ 29 + T3C )

T 11+ x0j + x3k
0 Tt + T2 + T3 H(l‘1d1’2+1’30 To — T1C — T3d

In particular, if 2+1 =0 in K (i.e. if we can choose d = 0), then the isomorphism above is given
by
H(K) — M»(K)

X0+ x1Cc T2 + X3C )

To + T11 + T2j + x3k — (
—X2 + T3c X9 — IT1C
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Note that

To + x1c+ x3d —x1d + 19 + T3C ) 5 o ) ) . , ,
det .2 d B 22— .
e ( —x1d — x2 + x3C 300—$1C—ac3d) x5 —x7(c® +d%) + a5 — x5(c” + d°) = ||

(5)|1=3 5 7 11 13 17 19 23 29 31 37 41 43 47
p=3 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 1
50 -1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1
7 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 1
mp -1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1
13 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1
7] -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1
19 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1
22| -1 -1 1 1 1 -1 1 1 -1 -1 1 1 -1
29 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1
31 1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1
37 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1
4/ -1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1
43 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1
47 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1

Table 15: Legendre symbol (?) for small distinct odd primes p, [.

5.2 p,l=1 (mod 4)

The following construction of the group I',; is taken from [53], see also [52], [16] and [39]. Let
p,l =1 (mod 4) be two distinct primes. We define the map

¢« H(Z) — PGLy(Q,) x PGLy(Q;)

T =x0+ 11 + x2j + T3k — o + :Elz,p T2t I’gl'p ) To + :Elz.l T2t :ESZ.Z )
—T + X3l To — T1lp —T2 + 31, Xog— T1Y

where i, € Qp, 7 € Q; satisfy iz +1=0,i} +1=0. The assumption p,l =1 (mod 4) guarantees
the existence of such 4,,%;. Note that ¢ is not injective, but (for =,y € H(Z)) we have (x) = 9 (y)
if and only if y = Az for some A € Q*. Moreover,

( To +T1%p T2 + T3lp >< Yo + Y1ip Yo + Y3ip ) < Zo + 211y 22+Z3ip)
—Ty + X3ip  To — Tiip —Y2 + Ysip Yo — Y1iip —29 +231p 20 — Z1%p

where zg, 21, 22, 23 are determined by
20 + 210 + 22) + 23k = (w0 + 10 + 22J + 23k) (Yo + y11 + y2i + y3k),
in particular ¥ (xy) = ¥ (x)¥(y) and

i -teemmso= (3 D)3 1)

={z € H(Z)\ {0} : x = Re(z)} = H(Z)
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Finally, let

Ty = {¢(2) | * € H(Z) has type oo, |z|*> = p"l*; 7,5 € No}
= {¢(x) | * € H(Z) has type oo, Re(z) > 0, |z|> = p"l%; r,s € Ng}.

Then I'y; < PGL2(Q,) X PGL2(Q;) < Aut(Zp41) X Aut(7j41) is a (p+ 1,1+ 1)-group. For a proof,
see [53, Section 3], and cf. Corollary 47. See [66] or [43, Chapter 5.3] for the description of the tree
(Bruhat-Tits building) 7,41 corresponding to PGL2(Q,) and its action on 7,4;. We can identify
the set of standard generators (and their inverses) of the (p 4+ 1,1 4 1)-group

Iy = (al,...,apTﬂ,bl,...,bHTl | R((p+1)/2,(1+1)/2))
as follows:
{ar,...,an2}* = {4(a) | & € H(Z) has type o0, Re(2) > 0, |2 = p} C Ty

and
{b1,.. ., b Y = {(x) | x € H(Z) has type og, Re(x) > 0, |z|> =1} C Ty,

=
where we have
(Y (w0 + m1i + @2 + 3k)) ™" = h(w0 — 1 — T2) — W3k),

i.e. ¥(x)~! = (Z). In particular, we have by Corollary 7(1) two non-abelian free subgroups in
Fp712

o
R
£}

yapi) = {(z) | x € H(Z) has type oo, |z]* =p", 7 € Ng} < T,

and

II2

Fro (b1, ... ,bHT1> = {¥(z) | * € H(Z) has type oo, |z|> = 1%, s € Ng} < T';.

We can see PSLy(Qj) as a subgroup of PGLy(Q,) of index 4 = |Q/(Q;)?|. With the iden-
tification from above, we have {aq,..., a/pTH} C PGL2(Qp) x PSL2(Q;) < PGL2(Q,) x PGL2(Q;)

if and only if (2) = 1, and {by,... i1} C PSLy(Q,) x PCLy(Qi) < PGLy(Qy) x PCLa(Qy) if
and only if (%) = 1. This follows from Lemma 42 (and Hensel’s Lemma), see also [15, p.134].

Note that our assumption p,! = 1 (mod 4) implies (?) = (%) by the famous law of quadratic

reciprocity, see e.g. [22, Theorem 2.2.2 iii)]. For I' = I',;, we observe that the index 4 subgroup
I’y is characterized as

Ty = {¢(z) | = € H(Z) has type op, |30|2 =p?"1%% s € Ny} < PSL2(Q,) x PSLa(Qy).

The fact that 'y ; is a (p+1,[+1)-group is mainly based on a factorization property for integral
quaternions, first proved by Leonard E. Dickson ([23]):

Proposition 46. (Dickson [23, Theorem 8]) Let x € H(Z) be of odd norm and let |x|* = p1 ...p;
be the prime decomposition of |x|*, where the factors p; are arranged in an arbitrary but definite
order. Then x can be decomposed as x = (V... 2" such that (V) € H(Z) and |z |> = p;,
i =1,...,t. This decomposition is uniquely determined up to multiplication of the factors x(¥)
with a wnit £1,+i,+4,+k (and up to the decomposition of prime numbers diwiding x, if such
numbers erist).

Corollary 47. Let p,l =1 (mod 4) be distinct odd primes. Recall that

Iy ={¢¥(z) | z € H(Z) has type oo, Re(z) > 0, |30|2 =p"l®% r,s € Ng}.
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Let

and

Ey = {¢(2) | * € H(Z) has type oo, Re(x) >0, |z|> = p} C Ty,

E, = {y(x) | x € H(Z) has type oy, Re(x) > 0, |z|*> =1} C Ty

If ¥(x) € Ey, then also ¢(z) = ¢(x)~t € Ey. By Lemma 44(3), the set Ej, has p+ 1 elements.
For these reasons, we write

Eh:{al,...,a%ﬂ}il

and similarly

(1)

(5)

Jyqu:{zyl,...,lyl%l}ﬂE1

Let x € H(Z) be of type oo such that |z|?> = pl. Then there are y,4,2,% € H(Z) of type oo
such that |y|?> = |§|> = p, |2]*> = || =1 and yz = x = 2. The quaternions y, 7, z, % are
uniquely determined by x up to sign.

Leta € By, b€ E,. Then there are unique a € Ep, be E, such that ab = ba.
The group T'p; is generated by {a1,...,ap+1,b1,...,b111}.

2 2
Let

{Oél,...,OépTH,OépTH,...,Oé_l} = {x € H(Z) : = has type op,Re(z) > 0, |z|*> = p}.

Let x € H(Z) be of type oo such that |z|*> = p" for some r € Ng. Then there is a unique
representation

T = ip”ww(al, ce ,apzl ,04;;;1 yee s O0),
where 1,19 € Ng, 2r1 + ro = r and wy, (1, ..., Qpt1, @pi1,...,07) denotes a reduced word
2 2
of length ro in {oq,...,aps1,@ps1,..., 01} (reduced means here that there are no subwords
2 2

of the form a;a; or aga;).

IR

Fii.

(al,...,ap_+1>§Fp+1 and <bl,...,bl+_1>
2 2 2 2

Proof. We define a map u : {x € H(Z) : « has type o} — {1,4,j,k} by

1, =« has type og,

i, x has type o1,
u(zx) ==
7, has type oo,

k, x has type o3.

Note that zu(x) always has type og.

(1)

By Proposition 46 there are §, 2 € H(Z) such that |§|?> = p, |2|?> =l and z = §2. Since p,l =1
(mod 4), the quaternions § and £ have type o. They have both the same type since x = 2
has type og. If § and Z have type og, we take y := ¢, z := Z and are done. If § and Z have type
01, 02 or 03, we take y := —gu(y), z := u(2)Z and get yz = —gu(Pu(2)z = —j(-1)2 = «.
The uniqueness up to sign of y and z follows from the uniqueness statement in Proposition
46. Analogously, one proves r = Zg.

a and b uniquely determine y, z € H(Z) of type og such that Re(y) > 0, Re(z) > 0, |y|? = p,
|z]2 = 1 and ¥(y) = a, ¥(z) = b. It follows that yz has type op and |yz|*> = pl. By (1),
there are ¢, 2 € H(Z) of type op such that |§|> = p, |2|? = [ and yz = 2. Moreover, ¢, 7 are
uniquely determined up to sign. In particular, there are unique g, 2 € H(Z) of type og such
that [§]2 = p, |2]> =, Re(j) > 0, Re(Z) > 0 and 2§ € {yz, —yz}. Now take b := (%) € E,
and @ := 9 (§) € Ej,. Since ab = 1(yz) = 1(—yz) = ¢(Z§) = ba, the claim follows.
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(3) Fix any element z € H(Z) of type op such that Re(z) > 0 and |z|?> € {p"l° : r,s € Ng}. We
may assume that » > 0 or s > 0. By Proposition 46, there is a decomposition

z=yM gm0

such that y™,... y(" € H(Z) have norm p and 2V, ... 2(5) € H(Z) have norm I. Note
that vy, ...,y 2D . 20) have type o, since p,l = 1 (mod 4). Our goal is to have a
decomposition

z=9WM . g0z 26

such that gV, ..., g and 2V, ..., 2(*) have norm p and I, respectively, and are moreover
of type 0p. To achieve this, we define the following algorithm:

g =y,
g = gDy (g®), i=1,...,r—1,
g =gugh), s > 1,

g =g if s =0,
2O = (g M) ifr > 1,
31 = 1) if r =0,

2(]) = u(g(]fl))z(‘j), j:2,...,5,
2@ = 50y (30)), ji=1,...,5s—1,
28 = 30,

By construction, |[§®> = |§@)2 = [yD 12 =p, i = 1,...,r, |fD]? = 202 = |22 = |,
j=1,...,s,and g, ... gD 21 2= have type oy. Moreover,
r =y Wy 006
4y D) (D)@ B 00 e
=5 =@

=+ Q(Q)u(g}@)) u(gj(2))y(3) e yM )

- —5®

=+ g ()M )

—_——
=z

=45 g zWy(zM) () )
=z 5@

=g gMzM a1y
N————

=z(s)

=450 g0 506

<>

It follows that also 4™ and 2(8) have type op. After replacing those §(? and 209 sat-
isfying Re(7®) < 0 and Re(2¢)) < 0 by —§® and —20), respectively, we can assume
that moreover Re(g™)) > 0,...,Re(§) > 0,Re(2V)) > 0,...,Re(2()) > 0 and still
r =45 gmMz®  206) But now,

¥(@) = g g ) = 9D )W) (),
where ¥(§)), ..., (")) € By, and ¢(2M),...,9(2®)) € E,.
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(4) See [44, Corollary 3.2] or [43, Corollary 2.1.10].

(5) <a1,...,apT+1>

IR

F 2| follows directly from the uniqueness statement in (4), using

Eh = w({al, . ’apgl,apzl yoe e ,041}).
(b1,...,bit1) = Fiya follows analogously.
2 2
O

The following proposition is motivated by [43]. Some parts of our proposition are obvious
generalizations of results appearing in [43], nevertheless, we try to give very detailed proofs here.

Proposition 48. Letp,l =1 (mod 4) be two distinct primes and Gp; := U(H(Z[1/p,1/1])). Then

(1) Ty S Gpi/ZGp,. More precisely, I'p; is (isomorphic to) a normal subgroup of Gp1/ZGp
of index 4 such that (Gp1/ZGpy)/Tp1 2 Z3.

(2) Ty < SO3(Q) < SO3(R) < PGL2(C), in particular I'y; is residually finite.

(3) If q is an odd prime different from p and l, then there is a non-trivial homomorphism
7:Tp ;1 — PGLa(q).

(4) Let q be an odd prime different from p and l, and 7 : T — PGLa(q) as constructed in (3).

Then
A(Ty) = PSLa(q), if (g) - (%> g
PGLa(q), else.

(5) Let g be an odd prime different from p and I, and 7 : T'),; — PGLa(q) as in (3) and (4).
Then 7(a?) € 7({b1,... ’bHTl>).

Proof. (1) To simplify notation, let G, := U(H(Q))). Since ZGp; = G, N ZG, = G, N ZGy,
and Z[1/p,1/1] is a subring of Q, and Q; (in particular G,; C Gp and Gp; C Gj), there is
an injective diagonal homomorphism

prl/Zprl — Gp/ZGp X GZ/ZGl
IZG;,,J — (IZG;,;,.%ZG[).

The isomorphism H(Q,) — M2(Q,) of Lemma 45 (with iz2> +1 = 0) induces an isomorphism
UH(Qp)) = Gp — GL2(Qp) = U(M2(Qp)) and consequently an isomorphism

Gp/2Gp — PGLy(Qp) = GL2(Qp)/Z2GLa(Qp)

To + 11 To + 31
rZG)p — P P i
—ZT2 + X3lp Xo — Tilp

Let p be the injective composition homomorphism
Gpi/ZGyy — Gp/ZGy x G/ ZG) — PGLy(Q,) x PGLy(Q;)
explicitly given by
o ([( 2y S0 M0 Z200)]) =
where x = xg + x1¢ + 225 + 23k € G, and 1[) is the natural extension of ¢ from H(Z) to

H(Z[1/p, 1/1]).
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Note that
U(Z[1/p,1/1]) = {£p"l° : r,s € Z},

hence by Lemma 39
Gpa = {x € H(Z[1/p,1/1)) : |2 = p"1; 7,5 € L}
and by Lemma 40(2)
ZGpy ={z € H(Z[1/p,1/1]) : © = Re(z) = £p"1°; r, s € Z}.

Now let = € H(Z) be an integer quaternion such that |z|> = p"l® for some r,s € Ny, then
x € Gpy and Y(x) = Y(z) = p(xZGpi) € p(Gpi/ZGp), hence Ty < p(Gpi/ZGp) =
Gp,1/ZGp,.

Note that each element in G,;/ZG,,; has a representative £ZG); such that x € H(Z) and
|z|2 = p"l°;r, s € Ny by multiplying with large enough positive powers of p and I, however
Tp1 # p(Gpi/ZGp,) since x must have type og in the definition of I', ;. More precisely, we
can write

P(Gpi/ZGp1) = gol'py Ugilp U gel'p i Ugsl'p; < PGL2(Qp) X PGL2(Qy)

where for each ¢ € {0,1, 2,3} we choose g, = ¥(x) for some & = xo+x1i+x2j+x3k € H(Z) of
type o, and norm |x|? = p"l%;r, s € Ny. For example, the simplest choice is to take r = s = 0

(o 2)LG V)]

(5 LG 2D
g2 == (j) = ( _(1) é)H( —(1) é)D
s =([(25)1C0 9)])

To see the decomposition of p(Gp/ZGp,) given above, we observe that p"l®* =1 (mod 4),
since p,l =1 (mod 4) and that therefore each decomposition of |z|> = p"l* as a sum of four
squares is a sum of squares of three even numbers and one odd number (cf. Lemma 44(3)). If

go :=1(1) =

~
o

(
a = vl0) = (
(

we take the quaternion multiplication on the four classes of quaternions of type og, 01, 02 and
o3 respectively, then we get a group structure, where the class of type o9 quaternions is the
identity element. The group is isomorphic to Z3, as it is seen in the following multiplication
table:

type oo type o1 type oo type 03
type og | type op type o1 type o2 type o3
type o1 | type o1 type op type o3 type 03
type oz | type o2 type o3 type op type o
type o3 | type o3 type oz type o type op

Because of ¥ (xzy) = 1(x)1(y), this group structure carries over to the cosets

{900 p,1, 1T p.1, 92T p1, 93051}
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in p(Gp,1/ZGp;) and we are done.

To summarize, we have shown that
4 s
Lpi < {y(2) | 2z € H(Z), |$|2 =p"1% 1,5 €Not = p(Gp1/ZGpu1) = Gpa/ZGy,.

If G is a group, we denote here by G/Z the quotient G/ZG of G by its center ZG. We study
the following diagram of group homomorphisms:

Ly —U(H(Z[1/p,1/1]))/Z — U(H(Q))/Z — U(H(R))/Z — U(H(C))/Z

)

Gpi/Z S05(Q) SO5(R) PGL,(C)

The homomorphisms in the top line are all injective: the first one I'); — Gp1/Z is described
in part (1) of this proposition. The other three homomorphisms are induced by the natural
injective group homomorphisms (which are induced themselves by the chain of subrings
Z[1/p,1/l) cQC R CC)

UH(Z[1/p,1/1))) — U(H(Q)) — U(H(R)) — U(H(C)), (18)
ZUMH(Z[1/p,1/1])) C ZUH(Q)) C ZU(H(R)) C ZU (H(C)). (19)
Assertion (19) follows directly from (18), using the fact (see Lemma 40(2))
ZUMH(R)) =UMH(R)) N {x € UMH(C)) : x = Re(x)},
which holds if R € {Z[1/p,1/l],Q,R,C}.
The homomorphisms
UM(Z[1/p,1/1)))/Z — U(H(Q))/Z — U(H(R))/Z — U(H(C))/Z

are injective, since (18) directly implies U(H(R1)) N ZU(H(R2)) < ZU(H(R;)), whenever
(Ry, Rp) € {(Z[1/p,1/1],Q), (Q,R), (R,C)}. In fact, the equality U(H(R,)) N ZU(H(Rz)) =
ZU(H(Ry)) holds by (19).

To get U(H(Q))/Z = SO3(Q), first note that U(H(Q)) = H(Q) \ {0} and define

U U(H(Q)) — S0s(Q)
] 23+ 2% — a3 — 22 2(xi12 — w073) 2(z13 + x022)
T |

2(xr1w2 + wox3) a2 — P+ 23 23  2(wax3 — T071)

2($1I3 - ong) 2(I2I3 + onl) x% — I% — I% + I%

where © = xg + x19 + 225 + 23k € U(H(Q)). It is well-known that ¢ is a surjective group
homomorphism. Even the restricted map

Iu@z)\foy : H(Z) \ {0} — SO3(Q)

is surjective, since ¥(ax) = V¥(z), if a € Q*, z € U(H(Q)). For an elementary proof of the
surjectivity of J|mz)\ {0}, see [41]. Moreover, it is easy to check that

ker(d) = {z € H(Q) \ {0} : 2 = Re(x)} = ZU(EL(Q)).
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Note that the axis of the rotation ¥(x) € SO3(Q) is (z1,22,23)7 and the rotation angle w

satisfies ) ) ) )

|[?

COSWwW =

To prove U(H(R))/Z =2 SO3(R), replace Q by R above.
The isomorphism U(H(C))/Z = PGLy(C) follows directly from Lemma 45.

Note that the injective composition homomorphism I',, ; — SO3(Q) is explicitly constructed
as follows: if v € T',; is given as v = ¢(z), where = zo + 17 + z2j + xsk € H(Z) has
type op and |x|? = p"I%; 7, s € Ny, then the image of v in SO3(Q) is ¥(z), independent of the
choice of x. In the same way, the image of v = ¢ (z) in PGL2(C) is

To+ 11 T + X310
—T9 + T3t Ty — Tl '

By a result of Malcev ([50]), finitely generated linear groups (over a field of characteristic
zero) are residually finite.

Let ¢ be an odd prime different from p,! and let Gy, := U(H(Z[1/p, 1/1]/qZ[1/p,1/1])). As
in the proof of (2), we denote by G/Z the quotient G/ZG of G by its center ZG. We want
to define the homomorphism 7 : I'y, ; — PGL2(g) as composition

Ty = Gpi/Z — Gapi/Z — U(H(Z,))/Z — PGLy(q).

We describe now these four homomorphisms.
The injection I'y; — G)p1/Z is given by part (1) of this proposition.

The unital ring homomorphism Z[1/p,1/l] — Z[1/p,1/1]/qZ[1/p,1/]] extends to a unital
ring homomorphism H(Z[1/p, 1/l]) — H(Z[1/p,1/l]/qZ[1/p,1/l]) mapping 1 to 1, i to i, j
to j and k to k (see [22, Chapter 2.4]) and induces a group homomorphism of the invertible
elements Gp; — Ggp,. It is easy to see that the image of ZG),; is contained in ZGy p .
This gives the second homomorphism

Gp,l/Z — Gq,p’l/Z.

The map
¢:Zqg— Z[1/p,1/1)/qZ[1/p,1]/l]
v+ qZ — v+ qZ[1/p,1/1],

v € Z, is an isomorphism of rings (or fields, since ¢ is prime), and ¢! therefore induces
isomorphisms

H(Z[1/p,1/1)/qZ[1/p,1/1]) — H(Z,),
Gapi = UH(Z[1/p,1/1)/qZ[1/p,1/1])) = U(H(Z,))

and finally an isomorphism G, ,;/Z — U(H(Z,))/Z. The only non-trivial thing to check is
the surjectivity of ¢: First, we have ¢(0 4 ¢Z) = 0 + ¢gZ[1/p,1/l]. Now, take any element

tp"l° + qZ[1/p, 1/1] € Z[1/p, 1/1]/qZ[1/p, 1 /1],

where ¢t € Z \ {0} and ¢ is relatively prime to p and I. We assume that r,s < 0 (if r,s > 0,
then ¢~ 1(tp"l° + qZ[1/p,1/1]) = tp"l* + ¢Z; in the cases r > 0,s < 0 and r < 0,5 > 0 the
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proofs are similar to the proof for the case r,s < 0 given now). Then ged(p~"17%,¢q) = 1
obviously divides ¢, hence (see e.g. [35, Proposition 3.3.1]) there is an integer u such that
p "l *u =1 (mod q), i.e. t — p~ "l %u € ¢Z and

tp'l* —u=p"1°(t — p~"I"%u) € ¢Z[1/p, 1/1].
This implies
tp"l* + qZ[1/p, 1/1] = u+ qZ[1/p,1/1] = ¢(u + qZ).
The isomorphism U(H(Z,))/Z = PGL4(q) follows directly from Lemma 45, since there exist
elements ¢ and d in the field Z, such that 2+d>+1=0in Zg, see [22, Proposition 2.4.3].

Therefore, if v € T'p; is given by ¢(zo+z1i+x2j+23k) (Wwhere we require as in the definition
of I'y; that © € H(Z) has type op and |z|*> = p"l%;r,s € Ny) and we have chosen ¢,d € Z
such that ¢ +d?> +1 =0 (mod q), then 7 = 7.4 : ', ; — PGLa(q) is constructed as

T aly) = ro+x1c+x3d+qZ —x1d+ T2 + T3¢+ 97
ed\7) = —x1d — 22 + 3¢+ qZ 19— 21C— T3d + qZ '

For example if g = 1 (mod 4), we can choosed = 0 and ¢ € {1,...,g—1}, such that ¢?+1 =0
(mod ¢q), and 7 = 7 o simplifies to

- o +T1Cc+qZ T2+ T3¢+ qZ
—xo +23¢+qZ x9 —T1C+ GZ '

What happens if we take ¢ =2 7
Gap1 = U(H(Zs)) = Z3
is abelian, hence
Gopi/Z 2 UH(Z2))/Z =1# PGLy(2) = Ss.
Note that the field Zs is excluded in the assumptions of Lemma 45.

First, we show that 7(I',;) < PSLa(g) if and only if (%) = (é) = 1. The group I'y; is

generated by {ay,... ,a#,bl, A bHTl}7 hence 7(I'p;) < PSLa(q) if and only if
[r(@1)sees7(ag2), 7(b0), . m(biss )} € PSLa(q).

Since 7(a1), ..., T(ap+1) are represented by matrices in GL2(gq) with determinant p+¢Z € Z,
and 7(b1), ... ,T(bH»Tl) are represented by matrices in GLg(¢) with determinant ! + ¢Z € Z,,
the condition 7(I'p ;) < PSL2(g) is by Lemma 42 equivalent to the condition {p+¢Z,I+q¢Z} C

(Z))?. But this is equivalent to (%) = (é) =1 by Lemma 43.

By [43, Lemma 7.4.2] or [44, Proposition 3.3|, we have
PSLQ((]) < T(<a1, ey CL;)T+1>) and PSLQ(q) < T(<b1, ey szl>),

in particular PSLa(q) < 7(T'p,).
The statement follows now directly since [PGL2(q) : PSLa(q)] = 2.

Exactly as in (4), we can show that

T b,...,b 1 =
(o)) = e o

Q= Q [~

=1
Since 7(a?) = 7(a1)? is represented by a matrix in GLa(q) with determinant (p + ¢Z)? =
p? + qZ € Zg, we have 7(a?) € PSLy(g) by Lemma 42 and the claim follows.

O
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See Table 16 for some information about the group U(H(R))/ZU(H(R)), where R is a com-
mutative ring with unit, p,{ =1 (mod 4) are distinct primes and ¢ is an odd prime.

R | U(H(R))/ZU(H(R))
Z[1/p,1/1] | contains I';; as index 4 subgroup
Z[1/p] | important in [43], virtually F pit

7| 72
Zq | PGL2(q)
Zo | 1
Q | SO3(Q)
R | SO4(R)
C | PGLy(C)

Qq | PGL2(Qq)

Table 16: U(H(R))/ZU (H(R)) for some rings R.

The following result is also mentioned in [60, Example 5.12] and [29, Proposition 3.2 and Proof
of Theorem 4.1]. Tt is a very special case of Proposition 74(3).

Proposition 49. T, ; contains a subgroup isomorphic to Z>.

Proof. By Lemma 44(1), we can choose x = x¢ + 214, y = yo + y1¢ € H(Z) such that zg,yo are
odd, x1,y; are even, |z|? = 23 + 22 = p, |y|?> = 3 + y? = . Obviously, we have zy = yx, hence
Y(x)Y(y) = ¥(y)Y(x). The subgroup (¢(x),(y)) is isomorphic to Z2, using the same arguments
as in the proof of Corollary 58. O

Jason S. Kimberley and Guyan Robertson have computed presentations of I'y, ; for many pairs
(p,1). They conjecture for the abelianization F;f’l

Conjecture 24. (Kimberley-Robertson [39, Section 6]) Let p,l = 1 (mod 4) be two distinct
primes, then

Zy x 13, fr=1,
pab o 73 x 7%, ifr =2,
P Ty x T3 x 73, ifr=3,

73 x Ty x 73, ifr =6,

-117-1
r = ged <p—,—,6>.

where

4 4

Note that the smallest pairs (p,!) such that r = 1,2, 3,6 are (5,13), (17,41), (13,37), (73,97)
respectively. Conjecture 24 is equivalent to the following conjecture (see Section 5.5 for general-
izations of Conjecture 25):

Conjecture 25. Let p,l =1 (mod 4) be two distinct primes.
If p,l =1 (mod 8), then

Fab o~ Zg XZ3 XZ§7 pr7l51 (mOd 3),
! Z5 x 72, else.

If p=>5 (mod 8) orl =5 (mod 8), then

[ob o Zo x T3 x 73, ifp,l=1 (mod 3),
ph Zo x 73, else.
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Proof of the equivalence of Conjecture 24 and Congjecture 25. Let p,1 =1 (mod 4) be two distinct
primes. First note that r € {1,2, 3,6} in Conjecture 24 and that all possibilities for (p,!) are treated
in Conjecture 25.

If = 6, then (p —1)/4 = 6s and (I — 1)/4 = 6t for some s,t € N, i.e. p = 24s+ 1 and
I =24t + 1. Tt follows p,l =1 (mod 8), p,l =1 (mod 3).

If r = 3, then (p —1)/4 = 3s and (I — 1)/4 = 3t, where s or t is odd (otherwise r would be
6). Consequently, we have p = 12s+ 1 and [ = 12t + 1, in particular p,l = 1 (mod 3). If s is odd,
then p =5 (mod 8). If ¢ is odd, then I =5 (mod 8).

If r =2, then (p—1)/4=2sand (I —1)/4=2t,i.e. p=8s+ 1 and [ =8t + 1, hence p,l =1
(mod 8). Moreover, s # 0 (mod 3) or t # 0 (mod 3) (otherwise r would be 6). In the first case,
we have p # 1 (mod 3), in the second case [ # 1 (mod 3).

If r =1, then (p —1)/4=2s+1or (I—1)/4 = 2t + 1 (otherwise r would be even), hence
p=8s+5o0rl=8+5ie. p=>5 (mod8) orl! =5 (mod8). Moreover: (p—1)/4=3s+1 or
(p—1)/4=3s+2o0r(I—1)/4=3t+1or (I—1)/4=3s+2 for some s,t € Ny (otherwise r would
be a multiple of 3), hence p=12s+5or p=12s+9 or Il =12t + 5 or [ = 12t 4+ 9, in particular
p#1 (mod 3)orl#1 (mod 3). O

The structure of Fgf’l also seems to depend only on the number of commuting quaternions
whose -images generate I',, ;. To make this precise, if [ = 1 (mod 4) is prime, let ¥; C H(Z) be
any set of cardinality ”Tl, such that (¥(Y))) = FH»TI and each element y = yo+y1i +y2j +ysk € V]
has type oy and satisfies yo > 0, |y|> = [. We think of ¥; = {w’l(bl),...,w’l(bz#)} and
Y, = {¢"Ya1),... ,dfl(a%l)}, where

Ty =(a1,.. .,apTﬂ,bl, . .,bHTl | R((p+1)/2,(1+1)/2)).
Let
epr = {(z,y) 1w € Ypi y € Yis wy = ya}.
Note that the definition of ¢, is independent of the explicit choice of the elements in Y, and Y.

Obviously,
. [p+1 141
Cpy SmMing ——,——— .
2 2
Moreover, c,; > 3, since Y, contains elements of the form o + x17, xo + 227, ©o + z3k and Y]

contains elements of the form yo + y14, Yo + ¥27, Yo + ysk.
Conjecture 26. Let p,l =1 (mod 4) be two distinct primes, and

-117-1
r = ged <pT,T,6>

as in Congecture 24. Then

3 (mod 12), ifr =1,

9 (mod 12), ifr =2,

7( ), ifr=3,

1 (mod 12), ifr =6.
We have checked Conjecture 26 for all possible p,I < 1000. The following values for c,; appear

in this range:
{3,15,27,39,51,63,75,87,99}, ifr=1,
{9,21,33,45,57,69,81,93,105,117,129, 153}, if r =2,
{7,19,31,43,55,67,79,91,103, 115,127,151}, if r =3,
{37,49,61,73,85,97,109, 121, 133}, if r =6.

Cp,l
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See Table 17 for the frequencies of the values of ¢, ;, where p,I =1 (mod 4) are primes such that
p <1< 1000.

Cp,i 3 16 27 39 51 63 75 87 99 111 123 135 147
1242 449 143 56 34 17 7 5 2 1955

Cp,l 9 21 33 45 57 69 81 93 105 117 129 141 153
178 158 84 57 40 21 & 9 12 5 2 1| 575

Cp,l 7T 19 31 43 55 67 79 91 103 115 127 139 151
236 130 79 42 18 8 12 6 1 4 2 1] 539

Cp,l 1 13 25 37 49 61 73 8 97 109 121 133 145
26 15 15 16 7 4 3 2 3 91

Table 17: ¢,,; and its frequency, p < I < 1000.

Combining Conjecture 26 with Conjecture 24, we get

Conjecture 27. Let p,l =1 (mod 4) be two distinct primes, then

Ly x 13, if cpy =3 (mod 12),

Fab o Zg X Z§7 Zf Cpl = 9 (mOd 12),
pil Zo x T3 <73, ifcpy =7 (mod12),
Zg X Z3 X ng Zf Cpl = 1 (mOd 12)

Now, we want to prove that I', ; is commutative transitive. This has some nice applications to
centralizers of powers, or to detect anti-tori in I', ; (see Proposition 57 in Section 5.6).

Lemma 50. Let p,l =1 (mod 4) be two distinct primes. Let x,y € H(Z) be of type oy such that
|2, ly[> € {p"1* : ;s € No}. Then xy =y if and only if ()¢ (y) = ¥ (y)v(z).

Proof. Obviously zy = yx implies ()Y (y) = ¥ (y)¥(z). Assume now ¢ (z)Y(y) = ¥(y)v(z).
Then (zy) = ¥(yx) and zy = Ayz for some A € Q*. Taking the norm |- |? of 2y = A\yx,

we conclude A2 = 1, hence A = 1 or A = —1. If A\ = 1, then 2y = yx and we are done. The
case A = —1 is impossible since xy = —yx together with Re(x) # 0 implies by Lemma 41(3) the
contradiction y = 0. O

Proposition 51. Let p,l = 1 (mod 4) be two distinct primes. Then T'p; is commutative tran-
sitive, i.e. if x,y,z € H(Z) are of type oy such that © # Re(z), y # Re(y), z # Re(z) and

|22, [yl?, [21* € {p"1® = r,s € No}, ¢(2)¢(y) = ¢(y)d(z) and Y(x)y(z) = ¢(2)¢(x), then also
Y()(z) = P(2)v(y). In other words, the relation of commutativity is transitive on the non-
trivial elements of I'p ;.

Proof. Note that for x of type op we have = # Re(z), if and only if ¥/(z) # 1. By Lemma 50, we
have xy = yx and 2z = zx. Moreover, again by Lemma 50, ¥(y)¥(z) = ¥(z)9(y) if and only if
yz = zy. But yz = zy follows now directly by Lemma 41(4). O

Corollary 52. Let p,l =1 (mod 4) be two distinct primes, I' =T'),; and w € T'\ {1} a non-trivial
element.

(1) Ift €N, then Zr(w) = Zr(w).

(2) Zr(w) is abelian.
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(3) ZT =1.

Proof. (1) Since w and w® commute, the statement follows directly from Proposition 51 (using
the fact that T is torsion-free).

(2) Again, this is a direct consequence of Proposition 51.

(3) Of course, it follows from the general result Corollary 7(3) for (2m,2n)-groups. Here, it
follows from Proposition 51, since 1 # x € ZT" implies that I" is abelian.
(]

Using the following proposition due to Shahar Mozes ([53]) together with Proposition 8, we
give some applications to number theory, illustrated for two concrete examples:

Proposition 53. (Mozes [53, Proposition 3.15]) Let p,l =1 (mod 4) be two distinct primes,
I'= Fp,l = <a1a"'7al’T+1ab1a"'7bl+T1 | R((p+ ]‘)/2’ (l+ 1)/2)>

and let z = zg + 211+ 205 + 23k € H(Z) be of type op such that z # zo and |z|?> = I° for some s € N.

Take cq,co,c3 € Z relatively prime such that ¢ := c1i + coj + csk commutes with z. Then there

exists an element a € {a1,...,ap+1)\{1} C T commuting with 1(z) if and only if there are integers
2

x,y € Z such that ged(x,y) = ged(z,pl) = ged(y,pl) = 1 and 22 + 4|c|?y? € {p"l* : r,s € N}.
Proposition 54. (1) There are no pairs x,y € Z such that
ged(z,y) = ged(x, 65) = ged(y,65) =1

and
2? +12y* € {5"13% : ;s € N}.

(2) There are no pairs x,y € Z such that
ged(z, y) = ged(z, 221) = ged(y,221) =1

and
2 +8y% € {13717° : 1,5 € N}

Proof. (1) For by = (1 + 2i + 25 + 2k) € I's 13 =: T" we have Zr(b1) = (b1), see Theorem
41(8) below. In particular, b; does not commute with any element in (a1, a2, as) \ {1}. The
statement follows now by Proposition 53, taking ¢ =i + j + k.

(2) By Theorem 40(4) below: Zp(bs) = (bs), where by = (3 + 21 + 2j) € I'1317 =: I'. Taking
c =1+ j, we can again apply Proposition 53.
O

The results on centralizers in I',; used in the proof of the preceding proposition can also be
applied to give statements about non-commuting quaternions. We first illustrate it for (p,l) €
{(5,13), (13,17)}.

Proposition 55. (1) Lety = 14+2i+2j+2k. Then there is no x = xo+x1i+x2j+ask € H(Z),
x # Re(x) of type oy such that |z|?> € {5" : r € N} and zy = yx.

(2) Lety =3+ 2i+2j. Then there is no © = xg + 211 + x2j + w3k € H(Z), = # Re(z) of type
0o such that |x|? € {13" : r € N} and xy = yx.
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Proof. (1) LetI' =T513 and by = ¢ (y) € I'. Assume that x = zo + x1i + z2j + z3k € H(Z) is of
type og such that |z]? € {5" : r € N} and xy = yx, where 2 # Re(x). This implies 1 (z) # 1
and ¢ (z) € Zr(by), contradicting Zr(b1) = (b1) (Theorem 41(8)).
(2) Same proof taking p = 13,1 =17, by = ¢(y) € T’ =T'13,17 and using Zr(bs) = (bs) (Theorem
40(4)).
O

Here is the general statement:

Proposition 56. Let p,l =1 (mod 4) be two distinct primes and

F:Fp,l = <a17"'7al’+17b1a"'7bl+T1 |R((p+]‘)/2’ (l+1)/2)>

Assume that p,(bj)(a) # a for some b; € {b1,.. .,bH»Tl} and all a € Ey. Let y € H(Z) be of type
oo such that |y|*> =1 and b; = v(y). Then there is no x = xo+ x1i + x2j + 23k € H(Z), © # Re(z)
of type oy such that |x|? € {p" : r € N} and xy = yz.

Proof. As in the proof of Proposition 55 this follows directly from the fact Zr(b;) = (b;) which is
a consequence of Proposition 8(1b). O

Now, we want to study the two examples I'1317 and I's 13.

5.2.1 Example: p=13,1 =17
Using the explicit identification

?

(1 + 20 + 25 + 2k
(1420 +25 -2k
(1 +2i — 25 + 2k
:w(1—2z+2]+2k
o(
¥
¥(3

Y

Y

— — —

?

= (3 + 2i),

=(3 + 29),

= + 2k)
=1+ 4),
=P(1+4j),
= (1 4+ 4k),
= (34 2i + 2j),
= (3 + 21 — 2j),
= (3 + 20 + 2k),
= (34 2i — 2k),
= (34 25 + 2k),
= (3 + 25 — 2k),

we get the following example I' = I'13 17 (the corresponding complex X is denoted by Ajs 17 in
[16] and essentially used there in the construction of finitely presented torsion-free simple groups,
see [16, Theorem 6.4]).
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Example 40. R(7,9) = R((p+1)/2,(1+1)/2) :=

a1biasbs, a1baazbi, a1bsasbs, aibsacbs,
—1 -1 _—1;—1 -1 _ -1

albga7b6, a169a5b2 s a1bg as b8 s a1b8 Qg bg,
-1 -1 —1 —1 —1 —1 —1

alb4 a3 b5, alb3 a5b9 , a162 a765 ) a1b1 a(;b7,

asbsasby ! beacby ! bra-'b boasb

205a40, a206a60; a207ar 09, a2090a604,
-1 _—-1;—-1 —1 —1 -1 -1 —1

a265 a7 b2 , agb4 a3b5 , agb3 ay bl, a2b2 a5bg,
bsasb beazby ' brag byt bsasby '

a305a506, a3zbea7bg aszorag 09 -, azbgasbg
—1 -1 _ —1;—1 —1 —1

a3b4 a7b2, a3b3 aﬁ b7 , agbl a7b4, a4b1a7b4 ,
—1 —1 -1 _—1;—1 —1

asb; " arbs, asbg “aeby, asbg “ag by, a4b3 aebs,
—1 —1 —1;—1 —1 —1 —1

a565 a5b4 , asbgaﬁ b2 , agb5a(;b4 , a6b9 asbg ,

aibsazby !,

a1b7_1aﬁb§1,
a2b2a3 531,
a2b9_1a4b§1,
agbfla;lb5,
agbglaglbs,
a4b4a7b;1,

a4b;1aglbg,

—1;—1
a7b3a7 b3 ,

Theorem 40. ( ) P, = PSLQ(lS) < 514, v = PSL2(17) < 518

(2)
(3)
(4)

(5)

Proof.

b =7y x 73, [T, 1% = Zg x Z35, T3 = 7y x Zg x Z3.

Any non-trivial normal subgroup of T' has finite index.

Ze(8) = Ne((8)) = (8), if b € {ba, .. bo}.
Zr(a) = Nr((a)) = (a), if a € {a1,...,a4}.

Let

aibeasba,
-1 _—1;-1
aibg ay b7,
bsaebg "
az03a6bg
by Lasb
a20g 4503,
a3b1a4 b 1,
bg asb
azbg ~a4b9,
bgaghs "
asbgaeby
—1;—1
a5b1a5 bl )

—1
a7b7a7b6 B

Vo= (1420 +2j + 2k, 3+ 2i, 1+ 44, 3+ 2i + 2j) < U(H(Q)).

ThenT = V/ZV.

)
)
);
)
)
)

)

(1)

po(b1) = (1,8,13)(2,9,4)(3,6,14)(7,12,11),

po(bs) = (1,10,11)(2,7,14)(3,4,8)(5,13,12),

po(bs) = (1,9,12)(2,3,10)(4,5,14)(6,11,13),

po(bs) = (1,4,8,3,13,5,10)(2,11,7,12,14,6,9),

po(bs) = (1,8,13,4,9,6,3)(2,12,5,10,11, 14, 7),

po(bs) = (1,2,9,4,12,7,8)(3,13,6,11,14,5,10

po(b7) = (1,4,5,10,2,12,9)(3,6,14,13,8,7,11

po(bs) = (1,3,10,2,11,6,9)(4,12,5,13,14,7,8),

pu(bo) = (1,10,11,3,8,7,2)(4,13,6,9,12,14,5),
pnlar) = (1,5,17,3,12,18,2,9,16)(4, 14,15, 6,7,13,8,10, 11),
pnlaz) = (1,6,3,2,14,18,16,11,17)(4,5,15,9,8,10,7,13, 12),
pnlas) = (1,7,16,17,15,18,3,8,2)(4,14,10,11,9,6,12,13,5),
pnlas) = (1,3,10,17,18,13,16,2,4)(5,8,9,11,12,6,7, 14, 15),
pnlas) = (2,8,3,10,17,11,16,9)(4, 14,6,12,5,15,7,13),
pnlag) = (1,7,16,13,18,12,3,6)(4,5,9, 11,14, 15,8, 10),
pnlaz) = (1,4,2,14,18,15,17,5)(6,7,8,9,12,13,10,11).
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—1p-1
a1b7a2 b6 )
-1 —1;-1
aibg a; by,
az2bsasbr,

-1 —1
azbs agb7 )
boasbg !

azb2asbg
bg tasb
aszbg 407,
-1 —1;-1
asbg “ag by,
-1 —1
a5b7 a566 )

—1
a7b9a768




(2) We use GAP ([28)).

(3) We can apply [16, Theorem 4.1] using the results in [16, Section 2.4] and [15, Section 1.8].
Note that PSLQ(ng) § H1 § PGLQ(Q13) and PSLQ(Q17) é H2 é PGLQ(Q17) such that
[PGLQ(Q13) . Hl] = [Hl . PSLQ(@13)] = 2 and [PGLQ(@17) . HQ] = [HQ . PSLQ(Q17)] = 2

(4) This follows from Proposition 8.
(5) Let

).V — PGLy(Q,) x PGLy(Q))

v = 2o+ 210+ w2] + w3k 930+931Z'p T2 +1'32'p 7 fCoJrﬂElZ'z T2 Jr:Esl'z .
—ZT2 +X3lp Xo — Tilp —X2 + T3l To— T1Y

It is a group homomorphism such that ¢ (z) = ¥ (x), if 2 € H(Z) N V. We have

D(V) = (1 4 2i + 25 + 2k), (3 + 20), (1 + 45), (3 + 2i + 25))
= ((1+2i + 25 + 2k), (3 + 2i), ¥(1 + 45), ¥(3 + 2i + 27))
= <a1)a5)b2)b4> <T.

In fact, GAP ([28]) shows that [I" : (a1, as,ba,bs)] = 1, i.e. {a1,as5,b2,bs) = I'. Therefore
I'=¢(V) 2 V/ker(¢p). We claim that ker(¢)) = ZV. On one hand, we have

ker(¢)) ={x € V:zx =Re(x)} =V NZUH(Q)) < ZV.

On the other hand, if = zg + 219 + @2 + 23k € V < U(H(Q)) commutes both with
3+2i €V and 1445 € V, then x = Re(x) # 0, hence € ker(¢) and in particular

ZV < ker(v)).
O

Note that the only commuting pairs among the generators are {as, b1}, {ag, b2} and {az,b3}.

5.2.2 Example: p=5,1=13

Our second example is I' = I's 13, using the identification

a1 = P(1 + 2i),
az = P(1 +2j),
as = ¥(1 + 2k),

(1 4 2i + 2j + 2k),
(1 + 26 + 2§ — 2k),
)
)

(
(
(1 + 20 — 25 + 2k
$(1 = 20 + 25 + 2k),
(
(
(

Y

P(3 + 2i),
(3 +25),
(3 + 2k).

b1
b2
b3
ba
bs
be
by
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Example 41.

—1 —1p—1
arbiagbg ~,  aibaazby, arbsay by,
—1 —1p-1
arbgarby ",  aibsay by, aibsasbs,
—1;—1 —1 -1 -1
a1b7a2 b4 s a1b7 agbl, a1b6 ag bg,
o -1 -1 —1 -1 1
R(3,7) :=1{ aib;'az'bs, aib3'aiby’, agbeaz by’
asbsasby byaszb bsaz tbat
2030207 7, a2b4a30s5, a205as 03,
—1p—1 —1 -1 -1
azbsas "bg T, axbs “asby, azby “asgb; 7,
—1 —1p—1 —1, -1
a3b2a3b1 s a3b7a3 b7 5 a3b4 a363

Theorem 41. (1) P, 2 PGL2(5) < Ss, P, 2 PGL2(13) < S14.

(2) Pn(Xo) 2 PSLa(5), P,(Xo) = PSL(13), independent of the four vertices of Xo.
(3) T 7, x 73, [, T|® = Z3 x 73, T8 2 Z, x Z3 x Z2.

(4)

L/ (b7, b2, (a1az2)*, (bibs)*))r = PGLa(3) = Sy,
I/ {(af, (a1a2)?, (arb)", (b1bs)7, (a1b1bs)®)r = PGLa(7),
T/{(bT, (b1b5)°, (a1a2)”, (a1bibs)®)r = PGLy(11),
T/((b9, b8, (a1a2)?, (a1a3)?, (babe)®, (a1b1bs)?)r = PGLy(17),
I'/{(a3,a3,a3,b2%)r = PGLy(19),
L/ {(b1% b3, b, (babs)'t))r = PGLo(23),
L'/ {ai*, b3, b2, b8, (a1b1)*)r = PSLa(29).

(5) We get a finite presentation of

U(H(Z[1/5,1/13)))/ZU(H(Z[1/5,1/13]))
by adding to the presentation {(ai,as,as,by,...,by | R(3,7)) of T' two new generators i, j and
the relations
i?=1,j% = 1,ij = ji,
ait =1a1, a9t = ia;l,agi = ia;l,
arj = jay ', agj = jas, azj = jaz
byi = iby ', byi = ibs, byi = iba, byi = ib] ', bsi = ibs, bi = ibg ", byi = iby ',
bij = jb5 " baj = jba, bsj = jby baj = jba, bsj = jbs ' bej = jbs, brj = jb7 .
and T is then the kernel of
U(H(Z[1/5,1/13)))/ZU(H(Z[1/5, 1/13])) — 72

ai,az,as —

bl b7 —
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(6) (U(H(Z[1/5,1/13)))/ZU(H(Z[1/5,1/13])))*" = ZS.
(7) T < SO3(Q) (illustrating Proposition 48(2)).
(8) Zr(b) = Nr((b)) = (b), if b € {b1,...,ba}.

Proof. (1)

pu(bi) = (1,6,3,4,2,5)
pu(bs) = (1,6,2,5,4,3),
)
)

pn(ar) = (1,4,7,3,13,9,11,14,8,2,12,6),
pnlaz) = (1,3,5,2,11,8,12, 14, 10,4, 13, 7),
pnlas) = (1,2,6,4,12,10,13,14,9,3,11,5).
(2) GAP ([28)).
(3) GAP (]28)).

(4) GAP ([28]). To illustrate Proposition 48(3) and (4), the (surjective) homomorphism 733 :
I' — PGLy(7) with kernel (af, (a1a2)?, (a1b1)7, (b1b5)7, (a1b1bs))r is given by

[ 54+7Z 1+77 \]
aj — ’
1+7Z 4+7Z
1472 2+77Z
ag — )
54+772 1+77Z
0+7Z 4477
ag — )
4+77 2+7T7Z
4+77 0+77Z
bl'_’ ’
34+7Z 5+ 7Z
6+77Z 6+77Z
b2’—> ’
2477 3+ T7Z
4+77 3+7T7Z
b3’_> )
0+7Z H5+77Z
34+7Z 5+ 7TZ
b4’—> ’
14772 6477
0+7Z 1+7Z
b5*—> ’
1+7Z 6+7Z
3+772 2+77Z
bG*—> ’
5+72 3477
2477 4+ T7Z
b7’—>
(317z 4iz)



This corresponds to the permutation representation in Sg found by quotpic ([59]):

a — (1a577a274a673a8)7
as — (1,5,6,4,8,3,7,2),
as — (155735872577654)7

by — (2,6,4,3,8,7),

)
b2 = ]-; 5,4,6,8,3),
b3 = 1;572a774a6)

)

)

b5'_) 156775874557352)7
bG'_> 1,3,6,2,8,5,7,4),
by (1,7,3,4,2,5,6,8).

(
(
(
by — (1,5,8,3,2,7),
(
(

For ¢ = 29, we have 1129(I") = PSL2(29) < PGL2(29), given by

[/ 25+29Z 0+ 29Z

aj] — ’
i 0+4+29Z 6+ 297
[ 14297 2+29Z

ag — ’
1\ 274202 14292
[ 14297 24+ 297

ag +— )
\ 244202 14297
[/ 25+29Z 26+ 29Z

b1 = ’
\ 224202 6+297
[ 25+29Z 7+ 297

b2 = ’
i 3+4+29Z 6+ 29Z
[/ 25 +29Z 22+ 297

b3 — )
( 26 + 297 6+ 297 )]
[ 6+ 297 26+ 297

b4 — )
|\ 22429Z 25+ 29Z
[/ 27429Z 0+ 29Z

b5 = )
i 04297 84 297
[ 3+4+29Z 2+ 297

b6 = ’
|\ 274+29Z 3+ 29Z
[ 34297 24+ 297

b7 = .
( 244297 3+ 29Z )]

and kernel ((a}?, b3, b2 b8, (a1b1)®)r. The choice ¢ = 17, d = 0 gives another homomorphism
Ti7,0 : I' = PSL2(29) with ker(717,0) = ker(712,0). Note that ¢ = 29 is the smallest odd prime

such that (g) = (%’) =1, see Table 15.

This follows from Proposition 48(1). Observe that ¢ and j in the given presentation corre-

(L P[0 -
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and

or=([( 4 (S 3] erovsen<rovscu

respectively. Note that it would be enough to add the relations i2 = 1, j2 = 1, ij = ji,

ayi = iay, a1j = jay’, asj = jas, azj = jaz ', byi = iby ", bsi = ibs, bi = ibg ', b1j = jby*

in order to get a presentation of U(H(Z[1/5,1/13]))/ZU(H(Z[1/5,1/13])).

(6) This follows from the presentation given in (5).

(7) The injective group homomorphism I"' — SO3(Q) of Proposition 48(2) is given by

1 0 0
ap — 0 —-3/5 —4/5
0 4/5 -3/5
-3/5 0 4/5
as +— 0 1 0
—4/5 0 =3/5
-3/5 —4/5 0
az +— 4/5 -3/5 0
0 0 1
-3 4 12
1
b1 — ' 12 -3 4
4 12 -3
-3 12 —4
1
by — ' 4 -3 -12
-12 —4 -3
-3 —-12 4
1
b3 — ' -4 -3 -12
12 —4 -3
-3 —-12 —4
1
by — ' -4 =3 12
—12 4 -3
1 0 0
bs +— 0 5/13 -12/13
0 12/13 5/13
5/13 0 12/13
bG = 0 1 0
—-12/13 0 5/13

5/13 —12/13 0

by — | 12/13  5/13 0

0 0

(8) This follows from Proposition 8.

1

O

See Table 18 for the index [ : U] and the abelianization U, where U = (a;,b;), a; €

{a1,a2,as}, b; € {b1,...,b7}.
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L o [ b | b [ b | b [ b | b ]
a1 || 16,[16,32] | 16,[16,32] | 16,[16,32] | 16,[16,32] | oo,[0,0] | 96,[16,32] | 96,[16,32]
as || 16,[16,32] | 16,[16,32] | 16, [16,32] | 16, [16,32] | 96,[16,32] | oc,[0,0] | 96,[16,32]
as || 16,[16,32] | 16,[16,32] | 16,[16,32] | 16, [16,32] | 96,[16,32] | 96,[16,32] | oo, ]0,0]

Table 18: [ : U], U, where U = (a;,b;) in Example 41

5.3 Generalization to p,l =3 (mod 4)

The goal of this section is to generalize the construction of I',; of Section 5.2 to the case where
p =3 (mod 4) and [ = 3 (mod 4) are distinct primes. If we just naively define

I':= {(x) | z € H(Z) has type e, |z|* = p"I°; r,s € Ng},
then we have several problems:

(1) The condition “z has type ep” is not preserved under quaternion multiplication (for ex-
ample (i + j + k)2 —3 has type 0p), so we better define I" just as group generated by

al,...,a%,bl,...,bz#, where
{ai,... ,apTl}il = {¢(z) | z € H(Z) has type eo, |z|* = p},
{b1, .. .,szl}il = {¥(y) | y € H(Z) has type eo, |y|* =1}
or (as will be explained in (3))
{ai, ... ,a%ﬂ}il = {o(x) | x € H(Z) has type ey, |z|* = p},
{b1,-- b Y = {0(y) | y € H(Z) has type ey, [y* =1},
ie.

= {¢y(x) | |Jc|2 =p"l%;r,s € Ng,x € H(Z) has type e,

(Z) if |2|* = 3 (mod 4),
x € H(Z) has type oo,

(Z)

(Z)

if |z|> =1 (mod 4)}
if r + s is odd,

{¢(z) | |z]? = p"I%;7, 5 € Ng, z € H(Z) has type e,

x € H(Z) has type og, if  + s is even},

or

= {¢y(x) | |Jc|2 =p"l%;r,s € Ng,x € H(Z) has type e,

(Z) if |2 = 3 (mod 4),
x € H(Z) has type oo,

(Z)

(Z)

if |z|> =1 (mod 4)}
if r + s is odd,

{(x) | |z|* = p"l%;r,s € Ng,z € H(Z) has type e,

x € H(Z) has type og, if  + s is even}

for suitable 1), see (2).

What is 9?7 There are no elements i, € Qp, i; € Q; anymore such that if, +1 =0,
212 + 1 = 0. We have two possibilities to generalize ¢: Either we define ¢ : H(Z) —
PGLy(K,) x PGLa(K)), © = xo + 10 + x2j + x3k —

To + T1ip
—x9 + x30p

To + T3
To — T

To + T
—I2 + 231

To + T3ip
o — Zlip

{{ IR
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where K, K; are quadratic extensions of Q, and Q; respectively, containing elements 7, €
K, iy € K; such that i12,+1:0, il2+1:0,
or we define ¢ : H(Z) — PGL2(Q,) x PGL2(Q)), = = zo + x1¢ + x2j + x3k —

({( xo +x1cp +x3dp —x1dp + 2 + X3Cp ):| {( ro + xic +x3d; —xi1d; + 2 + X3¢ ):D
—x1dp — x2 + x3Cp To — T1Cp — T3dp —x1d; — x2 + x3¢) xo — x1c] — x3d] ’

where ¢,,dp, € Qp, ¢,d; € Q are elements such that 012, + df, +1=0,+d?+1=0.
Such elements exist since the equation 22 + 32 + 1 = 0 has solutions in Zy, and Z; (see
[22, Proposition 2.4.3]) and then applying Hensel’s Lemma. Both constructions of ¢ are
equivalent in the sense that they will give the same defining relations, hence the same group
I'. This mainly follows from ¢ (zy) = ¥ (z)¥(y) for both ¢. Therefore, we will always choose
any of those definitions of 1 in the following constructions.

(3) If p =3 (mod 8), then p can be written as a sum of (0 and) three odd squares (by Lemma
44(2),(3)). So if we take for example one generator a; := 1 (x) such that x = 0+x1i+x2j+x3k
) p g J

and |z|? = 22 + 22 + 2% = p, then
ar = (@) = P(—2) = (@) = Y(@) " = ar,

i.e. a?> = 1in I, in particular I is not torsion-free and therefore no (p + 1,1 + 1)-group. We
can avoid this problem by changing the type from e to e;:

{ar,... apn }* = {¥(2) | © € H(Z) has type e1, Re(z) > 0, |z[* = p}
and

{b1,.- b} = {(y) | y € H(Z) has type e1, Re(y) > 0, [y|* = 1}
whenever p =3 (mod 8) or I =3 (mod 8) (see Section 5.3.3, 5.3.4).
In the remaining case p,l =7 (mod 8), we essentially (we could replace e; by ey or e3) have
two possibilities: Either we again take

{ar,....ap0 ) = {(e) | 2 € H(Z) has type e1, Re(x) > 0,]af? = p}
and

{b1,. ., b} = {9(y) | y € H(Z) has type e1, Re(y) > 0, [y[* =1}
see dection 5.3.1) or we take
(see Section 5.3.1) ki

{ar,.... a0} = {(e) | & € H(Z) has type co, Re(x) > 0,]af> = p}
and

{b1,..., b} = {¥(y) | y € H(Z) has type eq, Re(y) > 0, [y|* =1}

(see Section 5.3.2). These two constructions give different groups (e.g. we have different
abelianizations in our examples, see the list in Section 5.5).

We always avoid type-mixing constructions, since if z has type e,, |#|?> = p and y has type
ex # €, [y|> =1, then |xy|? = pl =1 (mod 4). Hence, by Lemma 44(2), |zy|? can be written
as a sum of three squares (one odd and two even squares). By the following multiplication
table (Table 19), zy has type 01, 02 or o3, in particular Re(zy) is even, so it can happen that
Re(xy) = 0, but then zy = —7y, hence (zy)? = zy(—7y) € Z and (¢(xy))? is the identity
in I which implies that I" is not torsion-free.

In all constructions of I', we have
Ty = {¢(z) | € H(Z) has type oy, |z|* = p*"1**;r,s € Ng} < PSL2(Q,) x PSLy(Q;)

as in Section 5.2.
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type oo type o1 type oo typeos | type ey typeer typees typees
type og | type op type o1 type oo type o3z | type eg type e type ez type es
type o1 | type o1 type ogp type o3 type o | type e;r typeeg typees type es
type o2 | type o2 type os typeog typeop | type ez typees typeeo typee;
type o3 | type o3 type oz type oy type op | type e3 type ez type er type eg
type eg | type eg typee; typees typees | typeog typeo; typeos type os
type e | typeer typeep typeesz typeez | typeor typeop type oz type oz
type ez | type ea  typees typeeg typeei | type oz typeos typeop type o
type e | type es type ez typee; typeeg | type oz typeoz typeop typeog

Table 19: Multiplication table of quaternion types

5.3.1 p,l=7 (mod 8), type e1

Let p,l =7 (mod 8) be distinct primes. We take

{al,...,a/pTﬂ} = {Y(z) | © = 20 + 214 + 125 + 23k € H(Z) has type e1, 2o > 0,21 > 0, |z|? = p}

and
{br, o b} = {¥(y) [y = yo + yui + y2j + ysk € H(Z) has type e, yo > 0,51 > 0, |y|* =1}
and define I'p, ; as group generated by a1,...,ap+1,b1,..., bH»Tl. As an illustration of this construc-

+
b=
tion, we give two examples: First (p,l) = (7,23)

ar = Y142+ j + k),

as =91 +2i+j—k),
=¢(1+21—g+k),
=¢(1+2i—j—k),

by = (1 + 2i + 35 + 3k),
by = (1 + 2i + 35 — 3k),
by = (1 + 2i — 3§ — 3k),
by = (1 + 20 — 35 + 3k),
bs = (3 + 2i + j + 3k),
be = V(3 + 20+ j — 3k),
by = (34 2i — j + 3k),
bs = (3 +2i — j — 3k),
bo = (3 + 2i+ 35 + k),
bio = (3 +2i — 3j + k),
bin =v(3+2i+ 35— k),
bio =v(3+2i—35—k)

defines the (8,24)-group
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Example 42.

R(4,12) :=

Theorem 42.

Proof. (1)

—17—1
albla3 b4 ,
—17—1
a1b5a3 b7 ,
boay 'b
a109a, 04,
-1 _—13—1
arbyy ay by,
-1 -1
a1bsy “asbg ",
-1 -1
a163 a4bl ,
bsaz b
a203a3 011,
bipag 'b
a2010G49 07,
-1 -1
agbg a3512,
-1 -1
a2b4 a3b2 ,

—1;—-1
agb4a4 bg ,

—1;—1
a3b10a4 b12,

(1) P, = PSLQ( ) < Sg,

9 Fab§Z2XZ2, F,Fang3xZ2xZ64; Fab%ZQXZP,XZQ.
8 8 0 8

aybaay 'bs,
a1b6a2_1bg1,
arbioaz by,
albl_llaglbg,
albglazlbu,
albglaglbl,
azbsasbio,
Glegazlbﬁl,
GQbs_laZlbﬁ,
agbglazlbg,
azbsasby,

1
asbiiaz " be,

aibzagbs,
a1b7aZ1b1_01,
a1biiasbs,
albl_ola4b1_11,
a,lbgla,;lbﬁ,
albf1a4b§1,
asbsaz by,
agbf21a§1b8,
asby taz by
a2b51a3b21,
asbeasbz,

0,31)7_10,211)8,

v = PGL2(23) < SQ4

po(br) = (1,5,3,2)(4,8,6,7),
pu(bs) = (1,4,2,6)(3 7.8, 5),
pu(bs) = (1,5,7,6)(2,3,4,8),
pu(bs) = (1,3,7,4)(2,6,5,8),
pu(bs) = (1,2,3,7,8,6,4),
pu(bs) = (1,5,8,7,6,4,2),
pu(br) = (1,3,4,8,5,6,7),
pulbs) = (1,4,3,2,6,5,7),
pu(by) = (1,3,7,6,8,5,2),
pu(bio) = (1,4,8,6,5,2,3),
polbin) = (1,5,7,8,3,2,4),
pu(biz) = (2,6,7,5,8,3,4),
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a1bsazby,
a1b8¢11_1b127
a1bi2a3b3,
albg_laglblo,
arby tay bt
azbiasby,
asboaz b5 ",
agbﬁlailblg,
agbglagbgl,
azby az by,
agbgazlb;l,

—1
a4b5a4 bg

= (1,22,12,17,3,24, 23,11, 15, 16, 14, 19, 20, 2, 13,8, 21,9, 10,7, 5, 6, 18, 4),
=(1,2,21,7,15,4,23,22,8,20,19, 17,13, 14, 3,18, 10, 24, 6, 5,9, 11, 12, 16),
=(1,19,11,22,7,8,12,10,9,13,3,4, 23,6, 14,2, 21,24, 5,17, 18, 20, 16, 15
= (1,22,21,10,14, 13,15, 18,17, 4, 16, 5,23,12,11,6,8, 7, 19,2, 3,24, 9, 20).

)
)
)
)

)



(2) GAP (]28)).

Our second example is I'7 31:

(L+2i+ 35+ k),
(1+2i+j—k),
( )
( k)

1+2i—75+k
1+2i—j5—

Y

(4
(4
(G
(G :

= (1 + 2t + 5 + 5k),
1+2i+ 37— 5k),
1+ 2i—j+5k),

)
)
)
1+ 2i—j—5k),
)
)
)
k)

(4
=w
bs =1
ba=1
bs = Y(1+2i+ 55 + k),
=¢ 1+2i+45j — k),
¢1+21—5]+k:,
(4
(4
(4
(4

54247+ k),
542+ —k),
5+2i—j+k),

542 —j—k),

3+ 2+ 3 + 3k),
34 2i+ 35 — 3k),
3+ 2i — 35 + 3k),
34 2i— 35 — 3k).

big =1
(0
(0
(0

_~ AN A A A A A A A A A A A A A

b14
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Example 43.

R(4,16) :=

Theorem 43.

alblaglbgl,
a1bsagbg,
albgaflbgl,
arbizaibyy,
albf61a51b7,
albglaglbm,
albzlazlbg,,
agblaglbﬁl,
a2b6a3_1b§1,
asbiiay by ",
asbisaz 'byy,
a2b§1a4b6_1,
agbllaglbg,
a365azlbl_41,
azbisazbig

—1
a4b2a4bl5 5

albgaglbfg,
arbgaibyy
a1b1oallb§17
a1bl4a§15217
a1b1_31a21b16,
albglagbgl,
albg1a51b4,
azbaaszbs,
asbrasbe,
a2b1za§1bgla
agbl})lallbl,
a2b7_1a3_1b2,
agbglallblg,
azbsazbyy,
agbglallblo,

—1
a4b7a4b14 s

arbsaibiy,
alb7azlbl_01,
a1biiasbyy,
a1bisagbio,
albl_llazlbg,
albglallbn,
a1b2_1a2b1_1,
asbyagbiy,
aszbgasbis,
asbizazbio,
agbf41aglbl5,
agbgla4bg1,
azbiazbig,
a3bna§1b1_11,
a3bZ1a4b§1,

—1;—1
a4b12a4 b12,

(1) P, = PGLQ(?) < Sg, P, = PSLQ(S].) < Ss39.

a1bsasby,
albgaglbgl,
arbizay 'bit,
arbigay 'biy s
a1b1_01a3_1b12,
albglagbgl,
albflagbgl,
a2b5a2bf61,
azbioas 'byy s
asbaasbil,
agbglaglbg,
agbglallb%
agbgallbfl,
azbizaj 'bg ",
a3b§1a4bgl,

a4b16a4b§1]

(2) T 27y x 73 x 22, [T, T)% = 72 x 72 x Zgy, T8 = Zy x 73 x Z2.
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Proof. (1)

pu(b1) = (1,7,6,3,4,2,8,5),
pu(be) = (1,7,3,2,8,6,5,4),
po(b3) = (1,4,6,2,3,5,7,8),
po(bs) = (1,3,5,8,4,6,7,2),
pu(bs) = (1,6,5,7,2,3,8,4),
pu(bs) = (1,3,4,7,6,2,5,8),
po(b7) = (1,6,7,3,8,5,4,2),
po(bg) = (1,4,7,8,6,3,2,5),
pu(be) = (2,4,5,6,7,3),
po(bro) = (1,4,3,6,8,5),
pu(bi1) = (1,2,7,5,8,4),
pu(bia) = (1,8,7,6,2,3),
po(b13) = (1,4,2,7,3,6,5,8),
pu(bis) = (1,8,6,7,2,3,4,5),
po(b1s) = (1,8,4,5,7,6,3,2),
po(bi6) = (1,3,6,2,7,8,5,4),
pn(a1) =(1,31,22,27,18, 25,5, 26,17, 20, 21,23, 15,6, 8)
(2,32,4,14,3,10,7,28,29,30,19, 11,12, 13, 16),
pnlaz) =(1,31,26,28,17,9,11,14,15,8,27,7,16,5,12)
(2,32,18,19,22,21,13,4, 3,6, 25,24, 29, 20, 30),
pnlaz) =(1,2,7,28,21,32,17,31,3,29, 19, 18, 23, 24, 16)
(4,30,27,25,20,12, 10, 15, 14,5, 26,6, 13,8, 9),
pnlas) =(1,15,2,11,6,25,32,31,18, 10,9, 16, 13, 3, 29)
(4,30,23,26,19,28,8,27,20,17,24,22,14,7,5).

(2) GAP ([28)).

5.3.2 p,l=7 (mod 8), type eg
Again, let p,l =7 (mod 8) be distinct primes, but now we take
{ar,... a0} = {¢(2) | x € H(Z) has type eo, Re(z) > 0, |z|* = p}

and
{b1,-. brss } = {9(y) | y € H(Z) has type eo, Re(y) > 0, |y|* = 1}.

We denote the group
<a1,...,apT+1,b1,...,bz+_1>

2
by I'p 1., to distinguish it from I',; defined in Section 5.3.1.
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For p =7, | = 23, we choose now

b1

This defines the (8,24)-group I'7 23 ¢,

Example 44.

R(4,12) :=

a1biazby,
a1b5a2b1,
a1bgasbs,

-1 -1
a1b12 Qg b117
-1 -1
a1bg “ay by,

-1 _—-13-1
a1 by tay b3,
—1;-1
a2b7a3 blO’
-1 -1
azbis ay bs,
-1 ;-1
a2b6 a4b8 5
braz'h
a3zbias Og,
bgagbs !
a3b6a405 -,

agblo a4b12 5

=2 +1i+ 37+ 3k),
=241+ 35 — 3k),
=9Y(2+1—- 35— 3k),
=9Y(2+17— 35+ 3k),
=2+ 3i+ 5+ 3k),

2 —3i+j + 3k),
= (24 3i+ 35+ k),

=2+ 3t —
=Y(2—-3i—

( )
( )
( )
( )
( )
=2+ 3i+ 5 — 3k),
(2 —-3i+j — 3k),
( )
( )
( )
( )
( )-

37+ k),
3j+ k),

=Y(2-3i+3+k

—1;—1
arbaa; b5,
arbsazba,
1;—1
a1b10(11 b@ )
-1 —1;—1
aibyy ay by,
-1 —1;—1
aibg “az b7,
—1;—1
a2b3a2 b7 5
bgasb; *
a208a305
-1 _—1
a2b11 Ay b2,
-1 3-1
a2b4 a3b2 5
3bgagb; !
aszb2a40 -,
-1
asbgas by,

—1
a4b2a4 b57
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1
arbsaz by,
—1;—1
alb7a2 bS 5
—1;—1
a1b11a4 blO’
-1 —1;—1
aibg ay 077,
-1 -1
arby “ay b3,
bsay b
az0504 ~012,
bioas b
a2010G9 01,
by tasb
a20qg a4010,
—1 —1
a262 a3b4 ,
—1;—1
a3b3a4 b8 ,
—1;—1
a3b11a3 b3 5

—1;—-1
a4b7a4 bll?

a1bsazbio,
—17—1
albgal b4 5
a1biaaybs,
-1 _—1;-1
aiby az by,
-1 —1;-1
arby ay b7,
—17—1
agbga3 b117
bizaszby *
a2012a30¢
-1 -1
agbg a4b6 ,
by tash
207 G404,
—17—1
a3b4a4 b7 ,
-1 -1
a3612 a4blo,

-1
a4bga4 b4




Theorem 44. (1) P, = PSLQ(?) < Sg, P, & PGL2(23) < Soq4.

2) T% = 73 x Zy, [[,T)9 = Zy x Zy x L, T3 = Ly x Ly x 3.
2 162 40 8

Proof. (1)
pu(br) = (1,4,7)(3,5,8),
pu(b2) = (1,3,7)(2,6,4),
pu(bs) = (1,4,2)(5,8,6),
pu(ba) = (2,6,5)(3,7,8),
pu(bs) = (1,3,5)(2,6,8),
pulbs) = (2,5,8)(4,7,6),
pu(b7) = (1,3,4)(6,8,7),
pu(bs) = (1,2,5)(3,4,7),
pu(be) = (1,2,6)(4,7,8),
po(bio) = (1,4,6)(2,3,5),
po(b11) = (1,2,3)(5,7,8),
po(b12) = (3,5,7)(4,6,8),
pnlar) = (1,22,21,17,12,2,3,24,5,18,19, 15,4, 8, 7, 20,9, 14, 13, 23,6, 10, 11, 16),

1,2,21,10,13,16,8,3,11,12,15,18,5,6,24,9, 17,20, 7, 4, 23, 22, 14, 19
1,4,16,5,23,24,3,12,15, 14, 18, 21,9, 10, 13,8, 19, 20, 2,11, 7, 6, 17, 22

Pr a3

PG4

)

(a1) = (

pn(az) = (1,15,16,11,6,17,18,22,13,5,8,19,2, 21,24, 10,7, 3,4, 23, 14,9, 12,20
(a3) = (
(a4) = (

—_ — —

Note that any two of the permutations in the set {pn(a1), pn(az), pn(as), prn(as)} already
generate P, = PGLy(23).

(2) GAP (]28)).

5.3.3 p,l =3 (mod 8)

Let p,l = 3 (mod 8) be distinct primes,
o, saps }£' = {($(2) | = € H(Z) has type e1, Re(w) > 0,]f? = p},

{01, bisa }¥' = {¥(y) | y € H(Z) has type e1, Re(y) > 0,]y[* = 1}

and
prl = <a1,...,apzl,b1,...,bz+T1>.

We give the example I'3 11:

ap = (1 +j+Fk),
ag = (1 +j —Fk),
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Example 45.
-1 -1
a1b1a1b6 » a1b2a1b4 )
bsaib byay bzt
a103a10¢, a104G9 03
—1;—1 -1 -1
alb5a1 b5 s a163 Qo b4,

—1_ 31 —1_ 3-1
a1by asby ", a1by “agby

—1 —1
agblagbg 5 agbgagb5 s

asbyasbs, asbeay 'bg!
Theorem 45. (1) Ph = PGLQ(S) = 54, Py = PSLQ(].].) < S12.

(2) T =7y x 72, [[,T]% = 72 x Zgy, T2 = 7, x 72.

Proof. (1)
pu(b1) = (1,3,2,4),
pv(bQ) = (17 3, 274)a
pu(bs) = (1,2,3,4),
pu(bs) = (1,4,3,2),
pu(bs) = (2,3),
pu(bs) = (1,4),

pnlar) = (1,11,9,10,6)(2,12,7,3,4),
pnlaz) = (1,11,8,4,3)(2,12,10,9,5).

(2) GAP ([28)).
O

See Table 20 for the index [I' : U], the abelianization U and the structure of the quotient
G/U (if U is normal in G), where U = (a;,b;), a; € {a1,a2}, b; € {b1,...,bs}.

L0 b [ b [ b | b [ b | b ]
a1 || 2,18,8],Z | 8,[8,32],— | 2,[8,8],Z2 | 8,[8,32],— | 00,[0,0],— | 2,[8,8],Z
as || 8,[8,32],— | 2,[8,8],Z2 | 8,8,32],— | 2,[8,8],Z2 | 2,[8,8],Z | o0, ]0,0],—

Table 20: [I': U],U%,G/U, where U = {a;,b;) in Example 45
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5.3.4 p=3 (mod &), =7 (mod 8)
Let p=3 (mod 8), ] =7 (mod 8) be primes,

{ar,...aps Y = {9(2) | @ € H(Z) has type 1, Re(x) > 0, [o]” = p},

{bl,...,bH»Tl} ={Y¥(y) | y = yo + y1i + y2J + ysk € H(Z) has type e1, yo > 0,31 > 0, |y|2 =1}

and
prl = <a1,...,apzl,b1,...,bz+T1>.

We construct the group I's 7:

ap = (1 +j+Fk),
=y +j—k),

(142i+ 5+ k),
(1+2i+j5—k),
(1+2i—j+k),
(14+2i—j—k).

(4
(G
(4
(4

Example 46.
alblaglbgl, a1b2a;1b3,

—1;—-1 —1
albga2 b4 s a1b4a1b1 s

aiby lasby,  aiby'ash,

a253a2551, a2b4a51b1
Theorem 46. (1) P, = PSLy(3) & A4, P, 2 PGLo(7) < Ss.

(2) FangQ XZ%, [F,I‘]“bgzg XZlG, SngQXZ§.

. T/{(a$, b1, (a1b1)®, (b1be)® ) = PGL2(5) >~ S,
T/ {a3, (a1b1)'™?, (b1b2)°)r = PGLy(11),
T/ {af, (a1b)™, (bib2)*)r = PGL2(13).
(3b)

(@S, b1, (arb1)®, (biba)° )& = Zo x Z3,.

(4) U(H(Z[1/3,1/7]))/ZUMH(Z[1/3,1/7])) has a presentation with generators a1, az, by, be, bz, by, i, j
and relators

R(2a4)7 alialiila aljagljila blib21i71; blijjila Z.27 j2a ijiiljil'

(5) (U(H(Z[1/3,1/7]))/ZU(H(Z[1/3,1/7])))** = Z3.
(6) Aut(X) = Dy.

(7) (a%a?, by b3bsbyt) = 72,
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Proof. (1)

po(br) = (1,4,3),
po(b2) = (1,2,3),
pu(b3) = (2,4,3),
pu(bs) = (1,2,4),

ph(a’l) = (15473) 775587672)7
pn(az) =(1,5,6,7,8,4,2,3).
(2) GAP ([28)).

(3a) Let ¢ be an odd prime distinct from p and [, and choose ¢,d € Z such that A+d?+1=0
(mod ¢), then we can define exactly as described in Proposition 48(3) a homomorphism
T ="Tea: Ipi — PGLa(g) by

T aly) = ro+x1ic+x3d+qZ —x1d+ 20 + T3¢+ 97
ed\Y —x1d — 20 + 3¢+ qZ w9 — x1C — X3d + qZ '

For ¢ =5 we have 192 : I's 7 = PGL2(5) given by

[/ 34+5Z 1+5Z \]

ay — )

[\ 4+5Z 4+5Z )|

[/ 445Z 1457 \]

ag — )

[\ 4+5Z 3+5Z )|

[/ 34+5Z 2457 \]

bl’—> ’

[\ 0+5Z 4+5Z )|

[/ 44+5Z 2457 \]

b2’—> ’

I\ 0+5Z 3+5Z )|

[( 3+5Z 0+5Z \]

b3’—> )

[\ 2+5Z 4+5Z )|

[ 4+5Z 0+5Z \]
b4i—>

2+5Z 3+5Z )|

4+11Z 24 11Z
aj — ’
0+11Z 9+ 11Z
9+411Z 0+ 11Z
ag — )
94112 4+ 11Z
6+11Z 7+ 11Z
bl’—> ’
5+11Z 7+ 11Z
0+11Z 5+ 117Z
b2'_’ )
3+11Z2 2+ 117
6+ 11Z 5+ 11Z
bS'_’ )
T+11Z T+ 11Z
0+11Z 3+ 1172
b4’—>
( 5+ 11Z 2+ 11Z )



and 70,5 - F377 —» PGL2(13) by

6+4+13Z 1+ 13%Z
ay —
124132 9+ 13Z
94132 1+ 13%Z
ag —
K 124 13Z 6+ 13Z )}
6+13Z 4+ 13Z
bl’—> ’
1\ 2+132 9413z
[/ 9+13Z 4+ 13Z
bQ’—> ’
2413Z 6+ 13Z
6+13Z 24 13Z
bg’—> )
4413Z 9+ 13Z
9+13Z 24 13Z
b4’—> .
4413Z 64 13Z

(3b) quotpic ([59])

(4) Same idea as in Theorem 41(5) using

UH(Z[1/p,1/1)))/Z2U (H(Z[1/p,1/1])) =

(5) Follows from (4).

(6) GAP ([28]). Aut(X

(alv az, blv b27 b3; b4) =
(a/17 az, b17 b27 b3) b4) =

(7) This follows since a3a? = (1 + 8i —

4j) and b, "bzbsb; "

{¢(2) |z € H(Z), |2]* = p"1% 1,5 € No}.

) is generated by the two automorphisms

-1 ;-1 3—1 3—1 ;-1
(alva’Q 7b4 7b2 ab3 abl )a

(az,ay ", b2, by, by, b3).

= (41 — 247 + 125) commute.
O

See Table 21 for the index [I' : U], the abelianization U and the structure of the quotient

G/U, where U = (a;,b;), a; € {a1,a2}, bj € {b1,...,ba}.
L & [ b [ b [ b ]
a1 || 4,(8,16],Zs | 2,[8,8],Z2 | 2,[8,8],Zs | 4,[8,16],Z4
a2 2; [8a 8]; Z2 4a [8a 16]; Z4 47 [87 16]7 Z4 27 [87 8]7 ZQ

Table 21: [[': U],U%,G/U, where U = (a;,b;) in Example 46

5.4 Mixed examples: p =3 (mod 4), [ =1 (mod 4)

Let p=3 (mod 4),! =1 (mod 4) be primes. Similarly as in Section 5.3, we construct groups I'y;
generated by

{a,... x) | x € H(Z) has type e1, Re(z) > 0, |ac|2 =p}
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and
{b1,..., b }5' = {4(y) | y € H(Z) has type oo, Re(y) > 0, |y|> =},

2

(see Section 5.4.1, 5.4.3), i.e.

Ty = {¢() | |z|> = p"I%;7, s € No,x € H(Z) has type ey, if [z[*> =3 (mod 4),
x € H(Z) has type og, if |z|*> = 1 (mod 4)}
={Y(x) | |z|* = p"I*;r, s € Ng,x € H(Z) has type e, if r is odd,
x € H(Z) has type og, if r is even},

and groups I'p ¢, generated by

{ai,.. .,a/pTﬂ}il = {¢(x) | # € H(Z) has type ey, Re(x) > 0,|z|*> = p = 7 (mod 8)}
and

{b1,- b} = {9(y) | y € H(Z) has type 0o, Re(y) > 0, |y|> =1 = 1 (mod 8)},
(see Section 5.4.2), i.e.

Tpieo = {W(x) | |2|? = p"1%r, s € N,z € H(Z) has type e, if |z[*> =7 (mod 8),
x € H(Z) has type o, if |2|*> =1 (mod 8)}
= {Y(z) | |z|* = p"I°;r, s € Ny, z € H(Z) has type e, if 7 is odd,
x € H(Z) has type og, if r is even}.

Note that for both constructions I',; and I'p, ; o, we have
Lo = {¢(z) | # € H(Z) has type o, |z|* = p*1**;r,5 € No} < PSLa(Qj) x PSLy(Q).
as in Section 5.2 and 5.3.
5.4.1 p=7 (mod 8), type e1
Let p=7 (mod 8), !l =1 (mod 4) be primes,
{ai,... ,apTﬂ} = {Y(2) | © = w0 + 217 + 227 + w3k € H(Z) has type e, xg > 0,21 > 0,]z]> = p},

{br,--, b =1 = {(y) | y € H(Z) has type o, Re(y) > 0, [y|* = 1}

and
F;,,J: (al,...,ap 1,()1,...,()1 1>.

We study two examples: I'7 5 is given by

G142+ j+ k),
G142+ — k),
V(1 + 2 —j+ k),
Y(1+2i—j— k),

ai
az
as
ay

b1 = Y(1 + 2i),
b2 = ¥(1+ 2j),
bs = (1 + 2k).
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Example 47.

—1 —1 —1 —1
albla3b3 5 albga462 5 albga4 bg, a163 a4b3,
= —1 -1 -1 —1;—1
R(4,3) = a162 agbl, a161 a4bl s a252a3 bg 5 agbga4b1,
by tazb by tazb by tazby? biasb
a2053 G303, G204 G302, a20¢ "aszb; , az01a402

Theorem 47. (1) P, 2 PGLy(7) < Ss, P, 2 PGL2(5) < Se.
(2) T9 =7, x 72, [T, T]% = Zy x Z2 x Zyg, T8 = Zy x Zs x Z3.
(3) Aut(X) = S,.
Proof. (1)
po(b) = (1,5,2,6,4,8,3,7),

pv(bQ) = (175537756725874)5
pv(b?)) = (176527357745875)5

pn(ar) = (1,6,5,3),
pn(a2) = (1,6,3,2),
pn(as) = (1,6,4,5),
pnlag) = (1,6,2,4).

(2) GAP ([28)).
(3) GAP ([28]). Aut(X) is generated by the two automorphisms

(a17a27a37a47b17b25b3) — (a17a37a47a27b37b17b2)5
—1 —1 —1 ;-1
(a1,az,a3,a4,b1,b2,b3) — (az,a; ", a1,a3",b1,b37,b57).
O

See Table 22 for the index [I' : U], the abelianization U and the structure of the quotient
G/U, where U = (a;,b;), a; € {a1,...,a4}, bj € {b1,b2,b3}.

L s [ b [ b ]
ar || 4,[8,16],2Z4 | 2,[8,8],Z2 | 2,[8,8],Zs
as || 4,[8,16],Z4 | 2,[8,8],Zs | 2,[8,8],Zs
as 4, [8, 16], Z4 2, [8, 8], ZQ 2, [8, 8], ZQ
as || 4,[8,16],Z4 | 2,[8,8],Zs | 2,[8,8],Zs

Table 22: [I': U],U%, G /U, where U = {(a;,b;) in Example 47

Our second example is I'7 13:

WL+ 2+ + k),
W1+ 245 — k),
W(1+2i—j+k),
Y(1+2i—j— k),

ai
a2
as
ay
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by = (1 + 2i + 25 + 2k),
boy = (1 + 2i + 25 — 2k),
bs = (1 + 2i — 25 + 2k),
by = (1 — 2i + 25 + 2k),
bs = (3 + 2i),
be = (3 + 2j),
by = (3 + 2k).
Example 48.

—1 —1;—1 -1
aibiaiby -, aibaasbs, arbzay by, aibsasby -,
a1b5a2b6, a1b6a2_1b3_1, a1b7a3b5, 0,11)7_10,3_11)21,
arbg tay byt arbytaytbgt,  aibytaz by, aibytasbs,

R(4, 7) = a2b1a2_164, a252a255_1, agbgazlb% a2b5a4b7_1,
asbraz'bgt,  asbrtay'dyt, asbylazbi,  agbylasby’,
a252_1a3b§1, Cl3()36l3()5_17 agb4a§1b1, a3b6azlb2,
azbg tasbs, azbytaytbgt,  asboar'bst,  ashslashyt

Theorem 48. (1) P, = PGL2(7) < Sg, P, & PGLQ(lS) < S1a.

(2) Fab gZQ X Z3 X Zi, [F,F]ab ng X Z% X Zlﬁ, Fg’b gZQ X Zg X Zg

Proof. (1)

pu(b1) = (1,5,6,2,4,8),

pu(b2) = (2,6,8,4,3,7),

pu(bs) = (1,2,6,3,7,5),

pu(bs) = (1,3,7,8,4,5),

po(bs) = (1,8,2,7,4,5,3,6),

po(bs) = (1,2,3,4,6,5,8,7),

po(b7) = (1,4,2,5,7,6,8,3),
pn(ar) = (1,4,8,13,12,2,3,6,11,14,10,7,9,5),
pnlaz) = (1,8,3,13,10,6,7,5,2,12,9, 4, 14, 11),
pn(as) = (1,11,7,2,12,10,9,8,5,3,13,6, 14, 4),
pn(as) = (1,4,10,8,6,5,11,14,7,12,13,3,2,9).

(2) GAP (]28)).
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5.4.2 p=7 (mod 8), type eg, I =1 (mod 8)
Let p=7 (mod 8),! =1 (mod 8) be primes,

{ar,... a0} = {¢(2) | x € H(Z) has type eo, Re(z) > 0, |z|* = p}

and
{by,.. .,bHTl}il ={Y(y) | y € H(Z) has type og, Re(y) > 0, |y|2 =1}

S

We denote the group (ay,... y At by,... ’bHTl> by I'p1.e,- Note that we have two restrictions in
this type ep case. Firstly, we exclude p = 3 (mod 8) for the reasons explained in Section 5.3.
Secondly, we exclude the case p = 7 (mod 8), [ = 5 (mod 8). To motivate it, observe that if x
has type eq, |z|> = p =7 (mod 8) and y has type op, |y|*> =1 =1 (mod 8), then zy has type eg
such that |zy|?> = pl = 7 (mod 8), in particular Re(zy) # 0 by Lemma 44(2). However, if z has
type e, |z|?> = p =7 (mod 8) and y has type op, |y|> =1 =5 (mod 8), then zy has type ey such
that |ry|? = pl =3 (mod 8) and it can happen that Re(zy) = 0. But this means that xy = —77,
hence (zy)? = xy(—Ty) € Z. As a consequence, 1 ((zy)?) is the identity in T and I is therefore
not torsion-free (x, y generate a “projective plane”). We will give an example for this phenomenon
later in this section, but first we look at the group I'7 17 ¢,:

V2 +itj+k),
Y@ +itj— k),
Y +i— k),
W@ —it k),

ai
a2
as
a4

= (1 + 4i),

(1 + 4j),

$(1+ 4k),

(3 + 2i + 2j),

B(3 + 2i — 2j),
( )
( )
(
(

(3 + 2i + 2K),
(3 + 2 — 2k),
V(3 + 25 + 2k),
V(3 + 25 — 2k).

b1
b2
b3
ba
bs
be
by
bs
bg
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Example 49.

R(4,9):

aibiasby,
bsasbg *
41050404
-1
arboasb, ",
-1 -1
a166 agbg 5
—-1 _—13-1
a1by ag b7,
—13-1
agb7a4 bg 5
-1 -1
a2b6 a4b2 s
by tasb
Q209 ~a40g,

—1;—1
a3bga4 bﬁ 5

aibgasby,

arbg tay b,

—1;—1
a369a4 b7 s

a1baagbs, a1bzazbg,

albglaglbgl, albzla4b7,

-1 -1 -1
a1by “ay by, azbiay by,
bgasb; * boaz *b
a208a30¢ a209a5 02,
-1 _—13-1 -1 -1
agbg “ay by, a2by ay bs,
-1 7—1 -1
agbl a3b8 y a3b4a4b3 y

Theorem 49. (1) P, = PGL2(7) < Sg, P, = PGL2(17) < Sis.

(2) T =273 x Zy, [[,T]% =2 73 x Zy x Z34, T3 =2 7y x Zz x Z2.

Proof. (1)

pPrlal

Pr a2

Phl04

(2) GAP ([28)).

(a1) =
(a2) =
pr(as) =
(as) =

Pu bl
v b2

s

vbS

S

vb4

DD

v (b6
Po(b7
pu(bs
Po(bg

s

(b1) =
(b2) =
(b3) =
(ba) =
w(bs) =
(bs) =
(b7) =
(bs) =
(by) =

(1,4,3,7,5,8,2,6),
(1,3,2,5,6,8,4,7),
(1,2,4,6,7,8,3,5),
(1,6,4,8,2,3,5,7),
(1,6,5,7,8,4,3,2),
(1,5,2,8,3,4,7,6),
(1,3,4,2,8,6,7,5),
(1,7,3,8,4,2,6,5),
(1,7,6,5,8,3,2,4),

—1;-1
alb7a3 b2 s

—1_ -1
aibg “asbs ",

-1 -1
a363 a4b4 s

a1bsasbo,
aibgaybs,
alb;lagbgl,
albg1a51b5,
asbsaz by ",
agb;1a§1b5,
agbglaglbg,
a3b5a4j1b1,

a3b51a21b5

1,10,18,6,5,11,2,7,17,4,9,13,3, 14, 16,8, 12, 15),
1,8,18,4,6,10,16,5,3,7,11,15,2,13,17,9, 14, 12),
)
)

1,14,13,11,3,15,16,12,10,5,2,6,17,8, 4,7, 18,9).

(
(
(1,11,18,5,7,9,3,4,16,6,8,14,17,12,2,10,15,13),
(

O

We illustrate now, why the (type eg) construction does not work in the case p = 7 (mod 8),
Il =5 (mod 8). Take p = 7,1 = 5: if for example a1 = (2 + i+ j + k), by = ¥(1 + 2i), then
¥((a1b1)?) = ¥(—35) = 1r, i.e. we have a projective plane, I' is not torsion-free and therefore no
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(8,6)-group. Nevertheless, we can do some computations: If we take

V2 +itj+k),
Y@ +itj— k),
Vi k),
W@ —it k),

ai
a2
as
a4

by = ’(ﬂ(l + Qi),
by = (1 + 2Kk),

then we get a group I' with generators ai,as,as,as,bi,bs,bs and the following 18 (not 12 1)
relators, where the twelve projective planes are printed bold:

Example 50.

aibia; by, aibza;ba, aibza;bs,
a1b§1a4b2_1, a1b2_1a2b1_1, albl_la3b§1,
a2b1a2b1, azbzazbz, agbgailbfl,
anglazbgl, a252_1a3_1()3, agbla;}bl,
a3b3a3b3, agbglagbgl, a3bf1a21b2,
34[)2214b27 a4b3a4b3, a4b1’1a4b1’1

Theorem 50. Let Iy := ker(I' — Z2,a; — (1,0),b; — (0,1)), generalizing the definition of the
subgroup Ty of a (2m, 2n)-group T.
1) T =73 x Zy.
2) [[,T)% = Zs x Zy x Z2.
3) T = 7Zy x Zz x Z2.
)

(
(
(
(4) T has the (vertical) amalgam decomposition
[ 2 F3 x5, (Z32 x F).
(5) T'o has the (vertical) amalgam decomposition
To = Fs xpy, Fs,
in particular T'g is torsion-free and I' is virtually torsion-free.
Proof. (1), (2), (3): GAP ([28]).

(4), (5): See Appendix B.1.
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Remark. Taking a generalized definition of pp,, py, Pr, Py, we get
pv(bl) = (17 7; 27 4; 57 6; 37 8);

pv(bQ) = (175a473a677a278>a
pv(b3) = (1765372577554’8)5

pnlar) = (1,5,2,4,3,6),
pnlaz) = (1,3,4,5,2,6),
pnlas) = (1,4,3,2,5,6),
pr(as) = (1,6,4,3,5,2),

generating P, 2 PGLa(7) < Ss and P, 2 PGL2(5) < Sp respectively.

We can take the six relators of I' in Example 50 which are not projective planes and embed
them in a (PGL2(7), PGL2(5))-group as follows:

Example 51.

—1 —1 —1 —1 —1

a1b1a4 bl, a1b2a3 b2, a1b3a2 b3, a1b3 a4b2 y
R(4,3) :={ aib; 'asby! by tasby ! biazb boasb
y90) = 109 “Q20; ~, a1b; "azbg ", 2010301, a2020402,
—17—1 -1 -1 -1 -1

a2b3a4 bl s a2b2 Qs bg, a3b3a4b3, agbl Qy bg

Theorem 51. (1) P, 2 PGL(7) < Ss, P, 2 PGL2(5) < Se.
(2) Pn(Xo) 2 PSLy(7), P,(Xo) 2 PSLy(5), independent of the four vertices of Xj.
(3) Tob =72 x 73, [I,T]% = Z3 x Z3, T3 = 73.
Proof. (1)
pu(b1) =(1,7,3,8,5,6,2,4),

pv(b2) = (175a278a677a473)a
pv(b3) = (176a478a775a372)a

prla1) = (1,5,2,4,3,6),
pr(az) = (1,3,4,5,2,6),
pn(az) = (1,4,3,2,5,6),
pn(aq) = (1,6,4,3,5,2).

(2) GAP (]28)).
(3) GAP (]28)).
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5.4.3 p=3 (mod 8)
Let p=3 (mod 8),l =1 (mod 4) be primes,

{ar, ... a0} = ((x) | 2 € H(Z) has type e1, Re(z) > 0, 2] = p},

{br,-, b ¥ = {(y) | y € H(Z) has type o, Re(y) > 0, [y|* = 1}

and

For example I's 5 is given by

ap :w(l—’—j—’—k)a
a2:w(1+,7_k)a

by = (1 + 20),
be = (1 + 2j),
by = (1 + 2k).

Example 52.
a1brazbs, arbaagbi !,

R(2,3) :=1{ aibza; 'by, aib3laiby’,

a1b1_1a2_1b3, a2b3a2b2_1
See Appendix D.8 for the GAP-program([28]) constructing I's 5.
Theorem 52. (1) P, 2 PGL(3) = S4, P, 2 PGL2(5) < Se.

(2) Fab = ZQ X Zi, [F,F]ab = Z% X ZIG; Fg’b = ZQ X Zg

(3a)
T'/{af, (a1b1)7, (b1b2)*)r = PGLa(7),
F/«a’?a a’ga b?a (a1b1)3>>r = PSLQ(ll)7
I/{aj,al, (a1b1)")r = PGLy(13).
(30)

(af, (a1b1)7, (brbo)* )& = Zyy x Z2g,

(af, a3, b5, (a1b1)* ) =2 Zy x Lo X Z,.

(4) U(H(Z[1/3,1/5]))/ZU(H(Z[1/3,1/5])) has a presentation with generators a1, as, by, ba, b3, i, j
and relators

R(2,3), ariari™", ayjay 'Y, byiby it bajbyi T, i2, 52, agi i
(5) (U(H(Z[1/3,1/5]))/ZU(H(Z[1/3,1/5])))*" = Zs.
(6) Aut(X) = Dy.

(7) T is commutative transitive.
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(8) Ifa € {a1,az2,a5",a; '} and b € {b1,b2, b3, b3 ", b5, b7 '}, then (a,b) is an anti-torus in T.
(9) {a1,b1) # Fa.

(10) T' < SO3(Q).
)

(11) Zr(a;) = Nr({(a:)) = (ai), if a; € {a1, az},

Zr(bj) = Nr((b;)) = (bj), i bj € {b1, b2, b3}
(12) T has amalgam decompositions
Fyxp, Fs =1 = o xp, Fy.
Proof. (1)

p’t}(bl) - (1735472)5
pv(bQ) = (174a273)a
pv(bB) = (174a372)a

ph(al) - (17 2) 47 6) 37 5))

pn(az) = (1,4,5,6,2,3).

(2) GAP ([28)).

(3a) Let g be an odd prime distinct from p and [, and choose ¢, d € Z such that ¢> +d?> +1=0
(mod ¢), then we can define exactly as described in Proposition 48(3) a homomorphism
T ="Tea: Ipi — PGLa(q) by

T ay) = To+ x1c+x3d+qZ —x1d+ 10 + T3¢+ g7
ed\Y —x1d — 20 +x3¢+qZ w9 — 21C — X3d + qZ '

For ¢ =7 we have 793 : I's 5 — PGL2(7) given by

4+77 3+7T7Z
aj — ’
1+7Z 5+ 7Z
54+772 6+ 77
ag — )
4477 4477
5+72 1477
bl'_’ ’
1+7Z A4+7Z
1472 2477
b2'_’ )
5472 1477
0+7Z 4477
b3’—>
4+77 2+ 777

In the same way 71 3 : I's 5 — PSL2(11) is defined by
4+ 117 2+ 117Z )]

[ 0+11Z 9+ 11Z

<
(ot 2]

ay —
@27 94112 4+11Z
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[/ 3+11Z 5+11Z
b1P—> ,
_<5+112 10+ 117Z ﬂ
[/ 1+11Z 2+ 117Z
bg’—> R
_(9+1IZ 1+112Z )]
([ 7T+11Z 2+ 117Z
bs —
1\ 2+ 11Z 6+11Z
and 7o 5 : I's;5 = PGL2(13) by
[/ 6+13Z 1+137Z
ay — ,
[\ 12+13Z 9+ 13Z
[/ 9+4+13Z 1+137Z
ag +— ,
[\ 12+13Z 6+ 13Z
[/ 1+13Z 3+ 13Z
b1P—> R
I\ 3+13Z 1+13Z
[/ 1+13Z 2+137Z
bg’—> ,
[\ 11+13Z 1+ 13Z
[/ 11+13Z 0+ 13Z
b3i—> .
1\ 0+13Z 4+13Z

(3b) quotpic ([59])

(4) Same idea as in Theorem 41(5) using

U(H(Z[1/p,1/1))/ZU(H(Z[1/p,1/1])) = {¢(2) | = € H(Z), ||* = p"I*;r, s € No}.

(5) Follows from (4).

(6) GAP (]28]). Aut(X) is generated by the two automorphisms

(a17a27b15b25b3) — (a17a2_17b1_15b3ab2)a

(a1, az,b1,b2,b3) — (az,ay’,b1,b3",b2).

(7) We can adapt Lemma 50 and Proposition 51, using Lemma 41(3). The only difference here
is that possibly ¢(z) € T" for some x € H(Z) \ {0} such that Re(z) = 0. But then

b(w)? = P(ari + w2 + w3k)® = (—af — a3 —a3) =1,
hence ¢ (z) = 1.
(8) See Section 5.6 for the definition of an anti-torus. The statement is an application of Propo-
sition 57 in Section 5.6 using (7) and an adaption of Lemma 50.
(9) We have ba$biaby tay b %a;! = 1 in T. This also follows from ya3y2zy 'z =3y 2z~ =1,
where © =1+ j 4+ k, y = 1 4+ 2i. The statement can also be deduced from Table 24. There

seems to be no smaller non-trivial freely reduced relation in (z,y) than the one of length 14
given above.
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(10) A generalization of Proposition 48(2) gives an injective group homomorphism I' — SO3(Q),

defined by

a1 — —

bll—>

b2l—>

b3l—>

(11) This follows from Proposition 8.

[\
—_

[
)
N

|
—_
— N

-2 =2

0 —
0

—3/5

—4/5

-3/5
4/5
0

0

0 —3/5

—4/5 0
—3/5 0

0

0
3/5 —4/5 |,
4/5 —3/5

4/5

(12) Use [69, Theorem 1.1.18]. The explicit amalgam decompositions are described in Appendix

B.2.

See Table 23 for the orders of some quotients of I'.

O

LT/quk)e] [k=1] 2] 3] 4] 5 6
w=a, 8] 64 8] 512 10560 64
w = asg 8 64 8 512 10560 64
w=b; 16 | 128 | 16 | 1024 | 109440 | 168960
w = by 16 | 128 | 16 | 1024 | 109440 | 168960
w = by 16 | 128 | 16 | 1024 | 109440 | 168960

Table 23: Order of T'/{(w*)r, w € {a1,az,b1,b2,b3}, k=1,...

,6, in Example 52

See Table 24 for the index [I' : U], the abelianization U and the structure of the quotient
G/U (if U is normal in G), where U = (a,b), a € {a1,a?,az,a3}, b € {by,b3,ba, b3, b3, b3}.

5.5 Some conjectures

Based on computations on the 130 examples described in the following list, we give some conjec-

tures afterwards.

P I | types | Sect./Ex.

P,

()

P,

Fab [F, F]ab ng
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5.2

5 13 41 PGL»(5) PGLy(13) 2,43 3,163 2,3,82
5 17 PGLy(5) PGLy(17) 2,43 3,163  2,3,82
5 29 PSLy(5) PSL2(29) 2,43 3,163 2,3,82
5 37 PGLy(5) PGL,(37) 2,43 3,163  2,3,82
5 41 PSL(5) PSL,(41) 2,43 3,163  2,3,82
5 53 PGL,(5) PGL(53) 2,43 3,165  2,3,82
5 61 PSL(5) PSL,(61) 2,43 3,163  2,3,82
5 73 PGL(5) PGLy(73) 2,43 3,165  2,3,82
5 89 PSLy(5) PSL,(89) 2,43 3,163  2,3,82
5 97 PGL(5) PGL2(97) 2,43 3,165  2,3,82
13 17 40 PSL,(13) PSLy(17) 2,43 3,16 2,3,82
13 29 PSLy(13) PSL2(29) 2,43 3,163 2,3,82
13 37 PGLy(13) PGL,(37) 2,343 22163 2,3,82
13 41 PGL2(13) PGLy(41) 2,43 3,163 2,3,82
13 53 PSL,(13) PSL,(53) 2,43 3,165  2,3,82
13 61 PSL,(13) PSL,(61) 2,343 22163 2,3,82
13 73 PGLy(13) PGLy(73) 2,3,43 22,163  2,3,82
13 89 PGLy(13) PGL,(89) 2,43 3,16  2,3,82
13 97 PGLy(13) PGL2(97) 2,3,43 22,163  2,3,82
17 29 PGLy(17) PGL,(29) 2,43 3,16 2,3,82
17 37 PGL,(17) PGL(37) 2,43 3,165 2,3,82
17 41 PGLy(17) PGLy(41) 23,82 3,16%,64 2,3,82
17 53 PSLy(17) PSL,(53) 2,43 3,165 2,3,82
17 61 PGLy(17) PGL,(61) 2,43 3,16 2,3,82
29 37 PGL»(29) PGL(37) 2,43 3,165 2,3,82
29 41 PGL2(29) PGLy(41) 2,43 3,163  2,3,82
29 53 PSL5(29) PSL,(53) 2,43 3,16  2,3,82
29 61 PGL2(29) PGLy(61) 2,43 3,163 2,3,82
29 73 PGL2(29) PGL,(73) 2,43 3,16  2,3,82
29 89 PGL»(29) PGL(89) 2,43 3,16  2,3,82
29 97 PGL2(29) PGL,(97) 2,43 3,16 2,3,82
37 41 PSL2(37) PSLy(41) 2,43 3,163 2,3,82
37 53 PSL,(37) PSL,(53) 2,43 3,163  2,3,82
37 61 PGL2(37) PGLy(61) 2,3,43 22,163  2,3,82
37 73 PSL,(37) PSL,(73) 2,343 22163 2,3,82
37 89 PGL»(37) PGL(89) 2,43 3,165  2,3,82
41 53 PGLy(41) PGLy(53) 2,43 3,163  2,3,82
41 61 PSLy(41) PSL»(61) 2,43 3,162 2,3,82
73 97 PSLy(73) PSL,(97) 233,82 ? 2,3,82
5.3.1
7 23 42 PSLy(7) PGL(23) 2,82 3,82,64 2,3,82
7 31 43 PGLy(7) PSL,(31) 2,3,82 22,8264 2,3,82
747 PGLy(7) PSL(47) 2,82 3,82,64 2,3,82
23 31 PSL,(23) PGL,(31) 2,82 3,82,64 2,3,82
23 47 PSLy(23) PGLy(47) 2,82 3,82,64 2,3,82




31 47 | (e1,e1) | | PSL»(31) 1| PGLy(47) -1 2,8 3,864 23,8
5.3.2
7 23 44 PSLy(7) 1 | PGL(23) 23,4 3,4,162 2,3,82
7 31 PGL2(7) —1 | PSL2(31) 23.3,4 2%2.4,16%> 2,3,82
747 PGL2(7) —1 | PSLy(47) 23.4 3,4,162 2,3,82
23 31 PSL,(23) 1 | PGL(31) 23,4 3,4,162 2,3,82
23 47 PSL2(23) 1 | PGL2(47) 23 4 3,4,162 2,3,82
31 47 PSL,(31) 1 | PGL2(47) 23,4 3,4,162 2,3,82
5.3.3
3 11 45 PGL,(3) —1 | PSLy(11) 2,82 82,64 2,82
3 19 PSL2(3) 1 | PGL2(19) 2,82 82,64 2,82
3 43 PSLy(3) 1 | PGL(43) 2,82 82,64 2,82
3 59 PGL,(3) —1 | PSLy(59) 2,82 82,64 2,82
11 19 PGLy(11)  —1 | PSLy(19) 2,82 3,82,64 2,3,82
11 43 PGLy(11)  —1 | PSLy(43) 2,82 3,82,64 2,3,82
11 59 PSLy(11) 1 | PGL2(59) 2,82 3,82,64 2,3,82
19 43 PSL,(19) 1 | PGL(43) 2,3,8% 22,8264 2,3,82
19 59 PGL(19)  —1 | PSLy(59) 2,82 3,82,64 2,3,82
5.3.4
3 7 46 PSL2(3) 1 | PGLy(7) 2,42 82,16 2,82
3 23 PGL,(3) —1 | PSLy(23) 2,42 82,16 2,82
3 31 PSLy(3) 1 | PGLy(31) 2,42 82,16 2,82
347 PGLy(3) —1 | PSLy(47) 2,42 82,16 2,82
11 7 PGLy(11)  —1 | PSLy(7) 2,42 3,82,16 2,3,82
11 23 PSLy(11) 1 | PGL(23) 2,42 3,82,16 2,3,82
11 31 PSLy(11) 1 | PGL(31) 2,42 3,82,16 2,3,82
11 47 PSLy(11) 1 | PGLy(47) 2,42 3,82,16 2,3,82
19 7 PSL,(19) 1 | PGLy(7) 2,3,4%2 22,8216 2,3,82
19 23 PSL,(19) 1 | PGL2(23) 2,42 3,82,16 2,3,82
19 31 PGL(19)  —1 | PSLy(31) 2,3,4%2 22,8216 2,3,82
19 47 PSL,(19) 1 | PGL(47) 2,42 3,82,16 2,3,82
43 7 PGL(43)  —1 | PSLy(7) 2,3,4%2 22,8216 2,3,82
43 23 PSL,(43) 1 | PGL2(23) 2,42 3,82,16 2,3,82
43 31 PSL,(43) 1 | PGLy(31) 2,3,4%2 22,8216 2,3,82
43 47 PSLy(43) 1 | PGLy(47) 2,42 3,82,16 2,3,82
5.4.1
7 5 47 PGLy(7) —1 | PGLy(5) 2,42 3,82,16 2,3,82
7 13 48 PGL»(7) —1 | PGLy(13) 2,3,42 228216 2,3,82
7017 PGLy(7) —1 | PGLy(17) 2,82 3,82,64 2,3,82
729 PSLy(7) 1 | PSLy(29) 2,42 3,82,16 2,3,82
7 37 PSLy(7) 1 | PSLy(37) 2,3,4%2 22,8216 2,3,82
7 41 PGLy(7) —1 | PGLy(41) 2,82 3,82,64 2,3,82
773 PGLy(7) —1 | PGLy(73) 2,3,82 22,8264 2,3,82
23 5 PGL3(23) —1 | PGLy(5) 2,42 3,82,16 2,3,82
23 13 PSL,(23) 1 | PSLy(13) 2,42 3,82,16 2,3,82
23 17 PGL2(23) —1 | PGL(17) 2,82 3,82,64 2,3,82
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23 29 PSL2(23) PSL2(29) 1] 2,42 3,82,16 2,3,82
23 37 PGL2(23) PGL2(37) —1| 2,42 3,82,16 2,3,82
23 41 PSL2(23) PSLo(41) 1] 2,82 3,82,64 2,3,82
23 73 PSLy(23) PSL»(73) 1] 2,8 3,82,64 2,3,82
31 5 PSL2(31) PSL2(5) 1] 2,42 3,82,16 2,3,82
31 13 PGL2(31) PGL2(13) —1| 2,3,42 22,8216 2,3,8?
31 17 PGL2(31) PGLy(17) -1 2,82 3,82,64 2,3,82
31 29 PGL2(31) PGL2(29) —1| 2,42 3,82,16 2,3,82
31 37 PGL,(31) PGL2(37) -1 2,3,42 22,8216 2,3,82
31 41 PSL2(31) PSLo(41) 1] 2,82 3,82,64 2,3,82
5.4.2
7T 17 49 PGL2(7) PGL2(17) -1 | 234 3,4,162  2,3,8?
23 17 PGLy(23) PGLy(17) —1| 23,4 3,4,162 2,3,82
31 17 PGL2(31) PGL2(17) -1 | 234 3,4,162  2,3,8?
7T 41 PGL»(7) PGLy(41) -1 23,4 3,4,162 2,3,82
23 41 PSL2(23) PSLy(41) 1 23.4 3,4,162 2,3,82
31 41 PSL2(31) PSLo(41) 1] 234 3,4,162 2,3,8?
7T 73 PGL»(7) PGL(73) -1 23,3,4 22.4,16% 2,3,82
5.4.3
3 5 52 PGL»(3) PGLx(5) —1| 2,42 82,16 2,82
3 13 PSL2(3) PSL2(13) 1] 2,42 82,16 2,82
3 17 PGL»(3) PGLy(17) -1 2,82 82 64 2,82
3 29 PGL2(3) PGL2(29) —1| 2,42 82,16 2,82
3 37 PSL2(3) PSLy(37) 1 2,42 82,16 2,82
3 41 PGL2(3) PGLy(41) —1| 2,82 82,64 2,82
3 73 PSLy(3) PSL»(73) 1| 2,82 82,64 2,82
11 5 PSLy(11) PSL»(5) 1| 2,42 3,82,16 2,3,82
11 13 PGLy(11) PGL2(13) —1| 2,42 3,82,16 2,3,82
11 17 PGLy(11) PGLy(17) -1 2,82 3,82,64 2,3,82
11 29 PGLy(11) PGL2(29) —1| 2,42 3,82,16 2,3,82
11 37 PSLy(11) PSL»(37) 1] 2,42 3,82,16 2,3,82
11 41 PGLy(11) PGL2(41) -1 | 2,82 3,82,64 2,3,82
11 73 PGLy(11) PGLy(73) —1| 2,82 3,82,64 2,3,82
19 5 PSL2(19) PSL2(5) 1] 2,42 3,82,16 2,3,82
19 13 PGL2(19) PGLy(13) -1 2,3,42 22,8216 2,3,82
19 17 PSL2(19) PSL2(17) 1] 2,82 3,82,64 2,3,82
19 29 PGL2(19) PGL2(29) —1| 2,42 3,82,16 2,3,82
19 37 PGL2(19) PGL2(37) -1 2,3,4% 22,8216 2,3,82
19 41 PGL2(19) PGL2(41) -1 | 2,82 3,82,64 2,3,82
19 73 PSL,(19) PSL»(73) 1] 2,3,8 22,8264 2,3,82
43 5 PGL2(43) PGL3(5) —-1| 2,42 3,82,16 2,3,82
43 13 PSL2(43) PSLy(13) 1] 2,3,42 22,8216 2,3,82
43 17 PSL2(43) PSL2(17) 1] 2,82 3,82,64 2,3,82
43 29 PGL2(43) PGL2(29) —1| 2,42 3,82,16 2,3,82
43 37 PGL2(43) PGL2(37) —1| 2,3,42 22,8216 2,3,8°
43 41 PSL,(43) PSL»(41) 1| 2,82 3,82,64 2,3,82




I | b | n3 | 03 |
a1 || 4,18,16],Zy | 2,18,8,Z2 | 2,[8,8],Z 6,[8,64], 8,[8,32], — 8,[8,32], —
as || 4,[8,16],Z4 | 2,18,8,Z2 | 2,[8,8],Z, 6,[8,64], — 8,[8,32], — 8,[8,32], —
a2 || 16,]16,32],— | 8,[16,16],— | 8,[16,16],— | 896, [32, 64], — 352 [32,32], — 352 [32,32], —
a2 || 16,[16,32],— | 8,[16,16], — | 8,[16,16], — | 896, [32,64], — | 352,[32,32],— | 352,[32,32], —

Table 24: [[': U],U%,G/U, where U =

{a,b) in Example 52

Conjecture 28. Let p,1 be odd distinct primes and I' = 1", ; as in Section 5.2, 5.8.1, 5.5.8, 5.8.4,

5.4.1 or 5.4.3.

(1) (c¢f. Conjecture 24 and 25) Assume that p,l =1 (mod 4) (Section 5.2).

If p,l =1 (mod 8), then

(X%, [I, 1)) = {

(Z3 x Zg x 73, 73 x Z3s x Zea)

(Z% X Zg, Z3 X Zfﬁ X ZG4)

Ifp=5 (mod 8) orl =5 (mod 8), then

(T, [[,T]%) =

(2) Assume that p,l =3 (mod 4) (Section 5.3.1, 5.3.3 and 5.3.4).

{(22 X Zg X T3, 72 x T3;)

(ZQ X Ziv ZS X Zf(i)

If p (mod 8) = I (mod 8), then

(I, [1, 1)) =

(Z2
(Z2
(Zo

If p (mod 8) # I (mod 8), then

(1", [, 1)) =

(Z2
(Zo
(Zo

X Ly X 72, 73 X 7% X Zg4)

X 73, 72 X Zgy)

X Zg, Zg X Zg X Z64)

X Ly X 73, 73 X 7% X 1)

X Zi, Zg X Z16)

X Zi, Zg X Zg X Z16)

(3) Assume that p =3 (mod 4) and I =1 (mod 4) (Section 5.4.1

Ifi =1 (mod 8), then

(T, [T, 1)) =

Ifl =5 (mod 8), then

(T, [, 1)) =

(Z2
(Zo
(Z2

(Z2
(Z2

X Zg X 73, 73 x 7% X Zg4)

X Zg, Zg X Z64)

X Zg, Z3 X Zg X ZG4)

X Zg X 73, 73 x 7% X Z1)

X 72, 7% X Z16)

X Zi, Z3 X Zg X Zlﬁ)
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if p,l =1 (mod 3)

else

if p,l =1 (mod 3)

else

if p,l =1 (mod 3)
ifp=3
else

if p,l =1 (mod 3)
ifp=3
else

and 5.4.3).

if p,l =1 (mod 3)
ifp=3
else

if p,l =1 (mod 3)
ifp=3
else



Conjecture 29. LetI' =1, ., be as in Section 5.8.2 or 5.4.2, then

(Z3 X Zg x La, T3 x Ty x Z35) if p,l =1 (mod 3)

(Fab7 [F,F]ab) o~ -
(Zg X Z4, Z3 X Z4 X Z%G) else

Conjecture 30. Let I' be any I'y; or I'p ;¢ of Section 5, then

. Zo x 72, ifp=3
Zo x T3 x 73, else

Remark. Note that T'g = {¢(x) | z € H(Z) has type o, |z|> = p*"1?*;r,s € No} in all cases of
Section 5.

Conjecture 31. Let I' be any I'y,; or I'y ., of Section 5, then

(1)
N PSLa(p), if ﬁ =1
| PGL2(p). if (L) =-1
and
Pvg{PSLQ(Z), if (2)=1
PGLy (1), if (&) =-1
(2)
‘Pf(bk)‘ =[Py p** Y
and

E—

As a consequence of (1) and (2):

(3)
‘P}gk)‘ _ p3k72(p2 - 1)/2a Zf % =1
PR -1, i () =1
and
P {13“02 ~1)/2, if <i) =1
l

PR22-1),  df (

)=-1
Conjecture 32. Let I' be any I'y; or I'p ¢, of Section 5, then
|Kn| =p°

and
|K,| =17

Remark. In all examples of the long list above (except for p = 73, I = 97, where we were not
able to compute [I', I'|*’) we have checked Conjecture 28, 29, 30, 31(1), and Conjecture 31(2) for
k=2.
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5.6 Anti-tori

Definition. Let ' = (a1, ..., am,b1,...,b, | R(m,n)) bea (2m,2n)-group and let a € (a1, ..., an),
b€ (by,...,b,) be two elements. The subgroup (a,b) < I' is called an anti-torus in T', if a and
b have no commuting non-trivial powers, i.e. if a"b® # b®a” for all r,s € Z \ {0}. If moreover
(a, by = Fy, then (a,b) is called a free anti-torus in T'. Obviously, a free anti-torus is an anti-torus.

A definition in a more general context is given by Bridson and Wise in [9]:

Definition. ([9, Definition 9.1]) “Let X be a compact non-positively curved space with universal
cover p : X - X. Suppose that there is an isometrically embedded plane in X which contains an
axis for each of 6,8 € m1(X,x) and that Zo € p~ 1z lies in the intersection of these axes. If §
and ¢’ do not have powers that commute, then gp{d, '} is called an anti-torus. If gp{d,d’'} is free
then it is called a free anti-torus.”

Remark. The first example of a (non-free) anti-torus was given in [69] (it is (az, b3) in our Example
12). It was used to construct interesting non-residually finite groups. An existence theorem for
free anti-tori (in a class not including (2m,2n)-groups) appears in [9, Proposition 9.2], but no
explicit example of a free anti-torus is given there or elsewhere (as far as we know).

The construction of I', ; in Section 5, based on the non-commutativity of quaternions, can be
used to generate many anti-tori. Before giving examples, we will state some general criteria for
the existence of anti-tori in commutative transitive (2m, 2n)-groups.

Proposition 57. LetT' = (a1,...,am,b1,...,b, | R(m,n)) be a commutative transitive (2m,2n)-
group and let a € {ay,...,am), b € (by,...,b,) be two elements. Then {(a,b) is an anti-torus in T
if and only if a and b do not commute in T'.

Proof. Assume first that (a, b) is no anti-torus in T, i.e. a"b® = b*a” for some r, s # 0. Obviously,
a commutes with a”, and b commutes with 0°. Using the assumption that I' is commutative
transitive, we conclude that a and b commute in I'. The other direction follows directly from the
definition of an anti-torus. O

Corollary 58. Let T’ = (a1,...,am,b1,...,b, | R(m,n)) be a commutative transitive (2m,2n)-
group and let a € {a1,...,am)\ {1}, b € (b1,...,b,)\ {1} be two non-trivial elements. Then either
{a,b) =2 72 or {(a,b) is an anti-torus in T.

Proof. If a and b do not commute, then (a, b) is an anti-torus in I by Proposition 57. Assume that
a and b commute. Since I is torsion-free, the subgroup (a, b) is a finitely generated abelian torsion-
free quotient of Z?. Using a,b # 1 and the uniqueness of the ab-normal forms (see Proposition 6)
of powers of a and b, we conclude that (a,b) is not cyclic, but itself isomorphic to Z2. O

Corollary 59. Let T’ = {(a1,...,am,b1,...,bn | R(m,n)) be a commutative transitive (2m,2n)-
group such that (m,n) # (1,1). Then T’ has an anti-torus.

Proof. There are elements a € {ay,...,am,a;',...,a; '} and b € {by,...,b,,b; ", ..., b7} which

m

do not commute; otherwise the (2m,2n)-group I' would be
<a1,. ..,am) X <b1,. 7bn> = Fm X Fn7

which is not commutative transitive if (m,n) # (1,1). By Proposition 57, (a,b) is an anti-torus
in I O

Reducible (2m, 2n)-groups have no anti-torus by the following result of Wise ([69]):
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Proposition 60. (Wise [69, Section II.4]) LetT' = (a1,...,am,b1,...,bn | R(m,n)) be a (2m,2n)-
group. If T has an anti-torus, then T' is irreducible.

Proof. Let (a,b) be an anti-torus, where a € (a1,...,am), b € (b1,...,b,). Suppose that T' is
reducible. Then by [16, Proposition 1.2], the subgroup A; x As has finite index in I, in particular
[{a1,...,am) : A1] < oo and [(b1,...,b,) : Ag] < oo. It follows that a” € Ay, b° € Ay for some
r,s € N. But then a"b° = b°a", a contradiction. O

Corollary 61. Let T’ be a commutative transitive (2m, 2n)-group such that (m,n) # (1,1). Then
I' is irreducible.

Proof. Combine Corollary 59 and Proposition 60. O

Corollary 62. Let T’ = (a1,...,am,b1,...,b, | R(m,n)) be a commutative transitive (2m,2n)-
group and let b € (by,...,by,) be an element such that Zr(b) = (b). Then {(a,b) is an anti-torus in
T for each a € {(a1,...,am) \ {1}.

Proof. The assumption Zr(b) = (b) implies that b # 1 and that b does not commute with any
element a € (ai,...,a,) \ {1}. Now apply Proposition 57. O

The groups I'p,; of Section 5.2 are commutative transitive by Proposition 51, in particular we
can restate the preceding results for Iy, ;:

Corollary 63. LetI'=T,; = (a1, .. y@ptis by, b | R((p+1)/2,(l+1)/2)) be as in Section
5.2 and let a € (al,...,a%ﬁ, be <b1,...,bz+T1> be two elements. Then

1) (a,b) is an anti-torus in T if and only if a and b do not commute in T.
2) Ifa,b# 1, then either {a,b) = Z? or {a,b) is an anti-torus in T.

4) T is irreducible.

(1)

(2)

(3) T has an anti-torus.
(4)

(5) If Zr(b) = (b) and a # 1, then {(a,b) is an anti-torus in T.

We can also restate Proposition 57 for I', ; only in terms of quaternions:

Proposition 64. Let ¢ andI' =T, be as in Section 5.2. Assume that x,y € H(Z) have type oo,
|z|2 = p", |y|> =1° for some r,s € N and xy # yx. Then ({(x),¥(y)) is an anti-torus in T.

Proof. By Lemma 50, 1(z) and ¥ (y) do not commute, hence (¢/(x),1(y)) is an anti-torus in I" by
Proposition 57. O

We can apply Proposition 64 for example to I's 17 and I'i3,17 or to any other I',; of Section
5.2, illustrating Corollary 63(3):

Corollary 65. Let i be as in Section 5.2.
(1) (1 + 2i),9(1 + 4k)) is an anti-torus in I's 17.
(2) (Y(3+2i),v(1+4k)) is an anti-torus in T'i317.

(3) Fiz two distinct primes p,l = 1 (mod 4). Choose by Lemma 44(1) two quaternions x =
xo + x18, Yy = yo + ysk € H(Z) such that xg,yo are odd, x1,ys are non-zero even numbers
and |z|> =23+ 23 =p, [y|> = y3 +y3 = 1. Then (Y(z),v%(y)) is an anti-torus in Ty ;.

Proof. (1) We apply Proposition 64, taking p=5,1=17,r=1, s = 1.
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(2) We apply Proposition 64, taking p=13,1=17,r=1, s = 1.

(3) Apply Proposition 64, taking r = 1, s = 1 and using the fact that zo + z14 and yo + ysk do
not commute.

O
Proposition 66. There are distinct primes p,l =1 (mod 4), a group
Tpa = {ar,...,ap1,by,. b | R((p+1)/2, (14 1)/2))
as in Section 5.2, and an element b € <b1,...,bl+T1>, such that {a,b) is an anti-torus for all

a < <a1,...,apT+1>\{1}.

First Proof. We choose p="5,1 =13 and b = ¢(1 + 2i + 2j 4+ 2k) € I'5 13. By Theorem 41(8), we
have Zr(b) = (b) and apply now Corollary 62. O

Second Proof. We take p = 5,1 =29, b = (3 +2j + 4k) € I'5 29 and ¢ = j + 2k. Assume that
there is an element a € (aj,as,as) \ {1} C I's 29 commuting with some power b', t € N. Note
that o' = ((3 + 25 + 4k)*) = (xo + Aj + 2Ak) for some zg, A # 0, depending on ¢. Then,
applying Proposition 53 to z = (3+2j +4k)?, there are z, y € Z such that ged(z,y) = ged(x,pl) =
ged(y,pl) = 1 and 22 + 4 - 5y = 5729° for some 7, s € N. But this implies 22 = 5(5"7129% — 4y?),
contradicting ged(wx, 5-29) = 1. (What we use here is that such a decomposition 2% +4-|c|?y? = p"l*
implies ged(|c|?, pl) = 1, as already noted in [53].) O

Proposition 67. There are distinct primes p,l =1 (mod 4), a group
r=r,,; = (al,...,a#,bl,...,bl# | R((p+1)/2,(1+1)/2))

as in Section 5.2, and elements a € (a1, .. .,apT“>, be (by,... ’bHTl> \ {1} such that (a,b;) is an
anti-torus for all b; € {b1,..., bH»Tl}, but {a,b) is no anti-torus, in particular Zr(a) # (a).

Proof. We take p =29,1 =41, a = (3+4i+2j) and b = ¢(—31424i+125) = (1465 —2k)p(1+
67 + 2k), hence ab = ba. It is easy to check that a does not commute with any b; € {b1,...,ba1},
in particular (a, b;) is an anti-torus by Proposition 57. O

Also note the following corollary of Proposition 49, see Corollary 75 for a generalization to
(2m, 2n)-groups:

Corollary 68. Let p,l =1 (mod 4) be distinct primes and
r=r,;={a,... ,apTﬂ,bl, - ,bH»Tl | R((p+1)/2,(1+1)/2)).

Then there are always elements a € (a1, . . . ,a#)\{l} and b € (b, ..., bH»Tl>\{1} such that {(a,b)
18 no anti-torus.

The next proposition gives sufficient conditions to generate free anti-tori in I'y, ;:

Proposition 69. Let p,l =1 (mod 4), ¢ as in Section 5.2, r,s € N, and x,y € H(Z) of type oo,
such that |z|* = p", |y|> = 1°. Suppose that z,y generate a (rank 2) free group in the multiplicative
group U(H(Q)) = H(Q) \ {0} (or equivalently in the subgroup U(H(Z[1/p,1/1])) < U(H(Q))).
Then (Y(x),¢¥(y)) is a free anti-torus in T'p ;.
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Proof. Extending v from the integer to the rational quaternions, let
Y : U(H(Q)) — PGLy(Q,) x PGLy(Q))

xzo+m1i+m2j+m3k»—><{< x0+xll‘p I2+$32.p )],[( IO+$IZ.Z I2+$32.l ﬂ),
—X2 + X3lp To — Tilp —I9 + X371, Xg— L1l

where xg, z1,22,23 € Q, z # 0. Note that U(H(Q)) = H(Q) \ {0} equipped with quaternion
multiplication is a non-abelian group, % is a group homomorphism such that

ker(y) = ZU(H(Q)) = {z € H(Q) \ {0} : # = Re(x)},

and ¢ (z) = (z), if z € H(Z) \ {0}. Now, fix some x and y satisfying the assumptions made in
the proposition. We restrict ¢ to the free subgroup (z,y) < U(H(Q)):

Dy = (@, y) = Fa — (§(2),9(y)) = (), (y)) < Ty

We have )
ker (e ) = (2,9) N ZUH(Q) < Z((w,y) = ZFs = {1},

in particular 1;|<z’y> is an isomorphism, i.e. (¢(z),¥(y)) = Fo.
By construction

(@) € ar,...,anp) = {(2) | @ € H(Z) has type op, |22 = 7, r € N} < Ty,

U(y) € (b, i) = {¥(y) | y € H(Z) has type oo, [y = 1%, s € No} < Ty,

where the (p + 1,1 + 1)-group I'p; is generated by a1,...,ap+1,b1,...,bie1. This shows that
2 2
(¥(x),¢¥(y)) is a free anti-torus in Ty ;. O

For example, if (3 + 2i,1 + 4k) = F;, < U(H(Q)), then Proposition 69 would give an explicit
free anti-torus ((3 + 23), 9 (1 + 4k)) in I'y317.

Question 12. (3 +2i,1+4k) = Fy?
More generally:

Question 13. Let p,l be distinct odd primes. Is there a pair x,y € H(Z) such that (z,y) = F» <
U(H(Q)), where |z|> = p", |y|> =1° for some r,s € N?

The anti-tori constructed in Corollary 65(1) and Theorem 52(8) are not free:

Proposition 70. (1) Let ¢ be as in Section 5.2, t =1+ 2i, y = 1 + 4k, a = (x), b = ¢¥(y).
Then the anti-torus (a,b) in I's 17 is not free.

(2) Let ¢ be as in Section 5.4.83, x =1+ j+k, y =14+ 2i, a = Y(z), b = ¥(y). Then the
anti-torus {(a,b) in I's 5 is not free.

Proof.

(1) In I's 17, we have the relation

a*b?ab ta?b e e 20 ha 2 ta B tabZab e 2ba T b 2020 203

ba"2b%a?b%ab " a?ba b 20 Whalbalb Lab?atba2ba " %ba" 20" e = 1.
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To get this long relation, we have used the GAP-command ([28]) PresentationSubgroupMtc(G,U),
where G and U describe T' and its subgroup (a,b), respectively. The corresponding relation in

U(H(Q)) is
x3y2xy_1x2y_1x2y_1:5_4y_2x_1yx_2y_1x_8y_1:vy2xy_1x_2yx_1y_2x_2y_2x3
ya tytatyPeytetye Tty TP yayaty T ey Patye Py Py Ty 2 0y T e = 1,
in particular (z,y) # Fy. Note that GAP ([28]) also shows that [['5 17 : (a,b)] = 32 and (a, b)2b =
Z16 X Zey. Moreover, {a,b) = (x,y)/Z(x,y), where Z(x,y) # 1, since e.g.
xy’1ny:cSy:c’:ay’l:cyac‘lmey’1x2y’1m2y’1m’4y’2x’ly:c’Qy’1x’8y’1my2m
y e Pya Ty ety Rty T PPy ety Ty e ety kg “laytat yx Pyz?
yrtyPa Ty ey ety Py T ey ety T ey e g Ty ety e
vl 2y Yy 22y 200 2oy Yty ity Ry Yty Yy e Ly

_ 1
y ety ety e gy ey ety = s € Zay).
(2) See Theorem 52(9). Recall that (a’,b'), t € N, is never abelian, and s 5 : (a,b)] = 4. Also
note that [[s5 : (a?,b?)] = 896 < oo, using GAP ([28]). In particular (a?,b?) is not free by the
following remark. 0

Remark. If {a,b) is a free subgroup in a (2m, 2n)-group I', then the index [I" : (a, b)] is infinite.
Otherwise, I' would be virtually free, but this is impossible since being virtually free is a quasi-
isometry invariant (see e.g. [31, IV.50]), and using the facts that (2m,2n)-groups are all quasi-
isometric (to F» x Fy), if m,n > 2 (see Proposition 80(4)), and that there are (2m,2n)-groups
which obviously are not virtually free, e.g. the virtually simple groups constructed in Section 3.

Note the following general question of Daniel Wise appearing in Mladen Bestvina’s problem
list “Questions in Geometric Group Theory” ([5]):

Question 14. (Wise [5, Question 2.7]) “Let G act properly discontinuously and cocompactly on
a CAT(0) space (or let G be automatic). Consider two elements a, b of G. Does there exist n > 0
such that either the subgroup (a™,b™) is free or (a™,b™) is abelian?”

Remark. Free subgroups of U(H(Q)) also induce free subgroups in SO3(Q) < SO3(R) via the
group homomorphism (see Section 5.2)

U U(H(Q)) — S03(Q)

23+ a2 — a3 — 22 2(r132 — TOX3) 2(z1x3 + To22)
o + 1t + 2] + x3k — EE 2(r179 + wox3) X3 —F + 23— 23 2(waw3 — TOT1)
2(x123 — TOT2) 2(xox3 + x021) :c% —x? — 22+ :c%

The proof is similar to a part of the proof of Proposition 69: First remember that
ker(v) = ZU(H(Q)) = {z € H(Q) \ {0} : x = Re(x)}.
Assume now that Fy = (z,y) < U(H(Q)). Then

Wiy« (2,y) > (0(x),9(y)) <SO3(Q)

is bijective, since it is surjective and

ker (19|(z,y>) = <$,y> N ZU(H(Q)) < Z(<Iay>) ENALES {1}’
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in particular (¢(x), d(y)) = Fs.
As an example, if (3 4+ 2i,1 + 4k) = F» (see Question 12), then the two rotations (around
perpendicular axes)

10 0 —15/17 — 8/17 0
9B+2i)={ 0 5/13 —12/13 |, 9(1 +4k) = 8/17 —15/17 0
0 12/13  5/13 0 0 1

would generate a free subgroup in SO3(Q). Note that if
Fp,l = <a1,...,apT+1,b1,...,bL+Tl | R((p—l— 1)/2, (Z—l— 1)/2)>

as in Section 5.2, then (a4, ... ,apTH> and (by, .. .,bz%ﬁ are free subgroups of SO3(Q) (combine
Corollary 7(1) and Proposition 48(2), cf. [43, Corollary 2.1.11]). For example, taking p = 5,

10 0 ~3/5 0 4/5 —3/5 —4/5 0
F3%< 0 -3/5 —4/5 |, o 1 0 |, 4/5 -3/5 0 ><so3(@).
0 4/5 —3/5 —4/5 0 -3/5 0 0 1

However, by Proposition 70(1) and (2) respectively, the following subgroups of SO3(Q) are not
free:

1 0 0 ~15/17 — 8/17 0
<19(1+2i),19(1+4k)>< 0 -3/5 —4/5 |, 8/17 —15/17 0 >
0 4/5 -3/5 0 0o 1
L3 22 1 0 0
<19(1+j+k),19(1+21‘)><§ 2 1 2|, 0 =35 —4/5 >
—2 21 0 4/5 —3/5

We can use the amalgam decompositions of I',, ; to construct integer quaternions x, y generating
a non-abelian free group in U (H(Q)) such that |x|? and |y|? are not both powers of the same prime
number (cf. Question 13). We illustrate this with an example:

Proposition 71. Let 1 be as in Section 5.4.8, x = 1+ 2i + 2j + 4k of norm |z|*> = 52, y =
3—2i+4j—k of norm |y|> =3-5. Then (z,y) = F> < U(H(Q)).

Proof. We have (z) = (1 + 2i)(1 + 25) = bibe and ¥(y) = (1 + j + k)(1 — 2k) = a1b3 " in
I's 5. By the vertical amalgam decomposition of I's 5 given in Appendix B.2

Fy = (s1,81) = (bibg, a1bz ') = (¥(x), ¥(y)) < Ty,
hence (z,y) = F» < U(H(Q)). O
5.7 A different quaternion construction: p=2,1=5
Let © = xo + 11 + x2j + 23k € H(Z). Motivated by the identities ([23])

(L +9)(xo + z18 + z2j + x3k) = (20 + 219 — T3] + 22k)(1 + 9),
(L + j)(xo + z1i + x2j + x3k) = (w0 + x50 + x2j — 21k) (1 + §),
(1 + ]C)(JJO +z17+ 227 + ng‘) = ($0 — X2t + 215 + ng‘)(l + k),
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we identify

ar =1+,
az =1+ 7,
a3 = 1+k,
az' =1k,
a;' =1},
a;t =11,
b =21+ 2i,
by 21+ 27,
by 2 1+ 2k,
byl =12k,
byt =124,
byte1— 2,
and get the following (6, 6)-group:
Example 53. T' = (a1, az, a3, b1, ba, b3 | R(3,3)), where

—1;—1 —13—1 -1
a1b1a1 bl s albgal b3 5 a1b3a1 bg,
= —1 —1p—1 —17—1
R(3,3) :==< asbiay b3, asbaas by, asbsa; b1,

—1p—1 —1 —1;—1
asbias by, asbaas by, azbsas by

Note that there is no map 1 involved in this construction, in particular I' behaves completely
differently than the groups I',; constructed before, e.g. T' is reducible, (1+1i)* = —4, but a} # 1r,
1+ and 1+ 2§ do not commute, but (a1, bs2) is no anti-torus.

Theorem 53. (1) P, =1, P, = S4 < S6.
(2) T is reducible.
(3) Al X A2 = F49 X F3 and [F : A1 X AQ] =24.

Proof. (1)

(2) This follows from the subsequent Lemma 72(1).

(3) Apply Lemma 72(3).
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Lemma 72. Let ' = (a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group such that P, = 1.
Then

(1) T is reducible.
(2) Ay X kerpp and Ay 2 kerp, = (by,...,by).
(3) A1 x Ay = Fpo_1y|p,|+1 X Fy has index |P,| in T.

Proof. (1) By Proposition 1(2a) it is enough to show that P}(LQ) =1.Letbe E,,a=
where a,a € Ep, a # a~*. Then p,(b)(a) = a and p,(pr(a)(b))(a) = a, i.e. pf)(b)(a) = a.
See Figure 10 for an illustration.

o
™
m

LS

Figure 10: P}EQ) =1

(2) Ay < ker pj, always holds, ker pp, < A; follows from Lemma 26(1a) using P, = 1.

(3) This follows from [{a1,...,an) : A1] = |P,|, which is a direct consequence of (2).
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6 Periodic tilings and Z?-subgroups

Let X be a locally compact complete CAT(0)-space and I' a properly discontinuous and cocompact
group of isometries. Then, in this general context, it is an open question if certain free abelian
subgroups of I' exist. We quote from [1, Question 2.3]:

“Is hyperbolicity equivalent to the non-existence of a subgroup of I' isomorphic to Z2?? More

generally, does I' contain a subgroup isomorphic to Z* if X contains a k-flat?
By the work of Bangert and Schroeder [...] the answer is positive in the case of compact, real
analytic Riemannian manifolds. Except for this, the answers to these questions are completely
open, even in the case where X is a geodesically complete and piecewise Euclidean complex of
dimension two!”

We will give in Proposition 74(3) an elementary proof that (2m,2n)-groups always contain a
Z2-subgroup. The idea of this proof (and the fact that this result holds) was explained to me by
Guyan Robertson.

Let T' = (a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group. Represent each of the mn
geometric squares in R(m,n) by an expression of the form aba’b’, where a,a’ € Ep, b,b’ € E,,, and
let T(T') be the set consisting of the 4mn (non-geometric) squares

) := U {aba'V', a'V'ab, a V' 1a/ 707, /o e )
aba’b’ € R(m,n)

Clearly, the definition of T'(T') only depends on T', but not on the choice of representatives in
R(m,n). Note that the four expressions aba’t’, a’t’/ab, a='b'~"1a’~'b~1 and a/~1b=ta=10'~! repre-
sent the same geometric square. We always visualize them in the plane as in Figure 11. Moreover,

/! /

a a a a
< < > >
7 4 Ab by Al b A \ A4 b A \ &)
e > < <
a a a a

Figure 11: Tiles in T(T") induced by the geometric square aba’b’

we assume that the four edges of each square in T'(T") have length 1. Such unit squares are usu-
ally called Wang tiles (named after Hao Wang [67]). We define “south-”, “east-”, “north-” and
“west-functions” S, E, N,W : T(T") — E, U E, as follows:

1

S(aba't') :=a, E(aba't') := b, N(aba'b') :=a'~", W(aba't') :=b'"".

A tiling (of the plane) is a map f : Z? — T(I'). We are only interested in valid tilings, i.e. tilings
where all edges match. Precisely, this means that for each (z,y) € Z?2

W(f(ac,y)) = E(f(x - 179))'

A valid tiling f : Z% — T(I') is said to satisfy the adjacency condition (AC) if for each (x,y) € Z>

S(f(z,y) #N(fx—1,y—1))"", (AC)
W(f(z,9)) # E(f(x =1,y —1))"".
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Note that (AC) is equivalent to

S(f(x—1,9)"" #S(f(z,y) #S(f(x+1,9) 7",
N(f(x—1,y)" ' # N(f(z,y) # N(f(z+ 1,9) 7",
E(f(x,y — 1) # E(f(z,9)) # E(f(z,y + 1)),
W(f(z,y—1)"" # W(f(z,y) #W(f(z,y+1)""

for each (r,y) € Z? and it requires that any word consisting of consecutive horizontal or consecutive
vertical edges in the tiling f is freely reduced, where the words of edges are seen as elements in
(a1,...,am) <T or (by,...,b,) < T respectively.

We say that a valid tiling f : Z%2 — T'(I) satisfies the condition (AC;) for some fixed j € Z, if
for each i € Z

S(f(ii+4)#N(fli—1,i—1+5)"", (ACy)
W(f(i,i+3)#E(f(i—1i—147)""

Note that if (AC;) holds in a valid tiling f : Z* — T(T') for each j € Z, then also (AC) holds for
I

A valid tiling f : Z2 — T(T) is called periodic with period (a,b) € Z2 \ {(0,0)}, if f(z,y) =
f(z +a,y+b) for each (z,y) € Z2.

The following lemma guarantees the unique extension of any T'(T")-valued map f on the main
diagonal in Z? to a valid tiling of the whole plane satisfying (AC), provided f satisfies the inequal-
ities of condition (ACy).

Lemma 73. Let f: {(i,i):i € Z} — T(T') be a map such that for each i € Z
S(f(%”) 7é N(f(l - ]-az.f 1))_1a
W (f(i,i) # E(f(i —1,i—1))7"
Then f uniquely extends to a valid tiling Z? — T(T'). Moreover, this tiling satisfies (AC).

Proof. The existence and uniqueness of a valid tiling Z? — T'(I') extending f follows directly by
the link condition in the (2m,2n)-group I'. We call this extension again f. By assumption, this
f satisfies (ACy). Let n € Ny, we prove now that condition (AC,) implies condition (AC,1).
In the same way, one can prove that (AC_,,) implies (AC_,,_1). By induction, we conclude that
[ :7Z? — T(I) satisfies (AC).

Assume now that (AC,) holds. Fix any ¢ € Z, to show (AC,,41), we have to prove that

S(flii+n+1)) #N(f(i—1,i+n)~",
W(f(i,i+n+1))#£E(f(i—1,i+n))""

Assume first that
N(f(i—1,i+n))"" =S(f(i,i+n+1)) (=N(f(i,i+n))).
Since W (f(i,i+n)) = E(f(i — 1,4+ n)), it follows by the link condition in I' that
S(f(ii+n))=8(fi—1,i+n)) " =N(f(i—1,i+n—1))"",
contradicting (AC,,). Similarly, assume that

W(f(i,i+n+1))=FE(f(i—1,i4+n))"t =W(f(i,i+n)) "L
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Then S(f(i,i +n+ 1)) = N(f(i,4 4+ n)) implies
E(f(iyi+n)) =E(f(i,i+n+1)""=W(fi+1Li+n+1))"",
again contradicting (AC,). O

Proposition 74. Fiz a (2m,2n)-group I’ = {(a1,...,am,b1,...,by | R(m,n)) and the correspond-
ing tile set T(I") defined as above.

(1) There is a periodic valid tiling f : Z* — T(T) satisfying (AC).

(2) There is a valid tiling f : Z* — T(T') satisfying (AC), and a number @ € N such that
flx,y) = fle+a,y) = f(z,y+a), i.e. f has the two periods (a,0) and (0,a) and therefore
s doubly periodic.

(3) There are commuting elements a € {a1,...,am) <T, b€ (b1,...,b,) <T such that
0 < |a] = |b] < 64m*n?,
in particular {a,b) is a subgroup of I' isomorphic to Z>.

Proof. (1) Our goal is to construct a valid tiling f : Z2 — T(T'), such that f(z,y) = f(z+2,y+2).
Fix any square ¢t := aba’b’ € T(T') and define f periodic along the diagonal {(i,7) : i € Z}
as follows. If a # o’ and b # ¥, then we define f(i,7) =t, i € Z. If a = d/, then we define
f(2i,2i) =t, f(2i+1,2i+1) =a 0" ta b7t i € Z. If b =/, then we define f(2i,2i) =t,
f(2i+1,2i+1) = a’'bta"'b7!, i € Z. See Figure 12 for an illustration of these three
cases. Now we can apply Lemma 73 to the map f : {(i,9) : i € Z} — T'(I"). The obtained

a’ a a’
vy AD \ &4 AD Yb AD
a a a a a a
vy AD AD \ 44 AD Yb
a a a a a
vy AD vy AD \ &) AD
a a a
a#£a,b£l a=ad b=10

Figure 12: Definition of f(i,4) in Proposition 74

unique extension f : Z? — T(T') satisfies (AC) and is obviously periodic with period (2,2)
(in the first case where a # o’ and b # b’, there is a smaller period (1,1)).

(2) We use an idea probably going back to Raphael M. Robinson ([61]). It was explained to me
by Guyan Robertson. Let f : Z? — T(T) be the tiling with period (2,2) satisfying (AC)
obtained in part (1). Since |T(T")| = 4mn is finite, we have

{(FG, —1), fli+ 1, =i+ 1)) ri € Z}| < |T(T) x T(D)| = (4mn)* < o,
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in particular there are i # j, such that |j —i| < (4mn)? and
fGi, i) = f(G,—j) and f(i+1,—i+1) = fG+1,-j+1)
It follows that
flay) =fla+i—iy+i—j)
for each (z,y) € Z?. Now, we compute
fla,y) = fletj—iy+i—j) = f(e4+2-2i,y+2i-2j) = f(z,y+4i—4j) = f(z,y+4j—4i)
and
flz,y) = fle+j—t,y+i—j) = fx+2j—2i,y+2i—2j) = f(z+4j—4i,y) = f(z+4i—4j,y).
Note that 0 < |45 — 4i| < 4(4mn)? = 64m?n2.
(3) We use the doubly periodic valid tiling f : Z* — T'(T) satisfying (AC) of part (2):
fy) = flz+a,y) = fx,y +a),

where @ > 0. Since the tiling only describes relations in I', we obviously have two commuting
elements a € (a1,...,am), b € (b1,...,b,) corresponding to the period a. Because of condi-
tion (AC), a and b are freely reduced and we therefore have |a| = |b| = @ € N. The upper
bound 64m?n? for the length of |a| and |b| can be obtained by the explicit construction in
(2). The statement (a,b) = Z?* follows as in Corollary 58.

o

Remark. T(T) is a reflection-closed 4-way deterministic tile set (following the terminology of
[37]), but T(T') is never aperiodic by Proposition 74(1).
We want to illustrate the constructions in the proof of Proposition 74 with a concrete example
and take Example 52 given as
I =T35 = (a1,az2,bi, ba, b3 | arbrashs, arbsasby ', arbsay ‘b1, a1by 'aiby ', arby tay b3, azbzasby ).
This defines the tile set
T(T') = {a1biasba, asbaaiby, a; by ay b7, ay by tay Py}
U{aibaasby?, asbytarbs, ay tbiay oyt ay tby taythy}
U {a1b3a2_1b1, a;lblalbg, al_lbl_lagbgl, agbglaflbfl}
U {albglalbgl, albglalbgl, aflbgaflbg, a;1b3a;1b2}
U{aiby tay tbs, ay tbzarby !, ap 'bs tagby, asbiay b3t}
U{agbzasby !, asby tasbs, ag tbaay b3, ay tbytay the .

In Figure 13, we can recognize a finite part of a periodic valid tiling f : Z? — T(I") satisfying
(AC), with periods (1,1), (=2,2), (4,0), (0,4), and commuting elements ajasaia;*, by *by '3 by,
generating Z2 = (ajasajay ', by by b3 ') < T'. Note that they correspond to the commuting
quaternions 5 + 4i + 65 — 2k and —11 — 127 — 185 + 6k of norm 3% and 5% respectively.

However, recall that {a;, b1) is an anti-torus in I, in particular there are also valid non-periodic
tilings of the plane using the tile set T'(I"). See Figure 14 for an illustration of a finite part of the
non-periodic valid tiling determined by (ai,b1). Note that all 24 squares of T'(I") appear in this

picture.

Corollary 75. Let ' = (a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group. Then there are
always elements a € (a1,...,am) \ {1} and b € (b1,...,by) \ {1} such that (a,b) is no anti-torus.

Proof. This follows directly from Proposition 74(3). O
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> < > > > <
al a2 ay az al az
\ &1 Y b2 o A b1 Y b3 - VY b1 VY by \": A Db
< > > > < >
az a a2 ai a2 ai .
Y2 . Abi AZIN A% Yo < Ab Yos o
> > > < > >
al a2 ay az al az
> Ab VY b3 an Yo 7  Ab \ A7 Y b
> > < > > - \
as al az al as al \\\
\ A7 \ A2 Yo, @ Ab \ A7 Y b1 Vb2:<
> < > > > <
a1 a1 a1

Figure 13: Illustration of Proposition 74 taking Example 52 and ¢t = a1bja2bs

7 Some 4-vertex square complexes

7.1 A very small candidate for simplicity

A (2m,2n)-group T is never simple, since T'g is a normal subgroup of index 4. However, we
have conjectured I'g to be a simple group in Example 1, 6, 7, 9, 10 and 11, and proved it to be
simple in Example 14. The corresponding square complex Xy has 4 vertices and 73, X T3, as
universal covering space. In this section, we construct a 4-vertex square complex Y, which is not
a 4-fold covering of a (2m,2n)-complex. Its universal covering space Y is 73 x Ta. Observe that
due to this more general construction, the degrees of the regular trees in Y are not necessarily
even. As a consequence, the number of geometric squares in Y is only 12 (compared to the 36
geometric squares of Xy in Example 1 or the 100 geometric squares of Xy in Example 14) and
we get therefore relatively short presentations of mY. The construction of Y is done in such a
way that Y is irreducible, all the “local groups” are at least 2-transitive and mY is perfect. This
seems to give some reasons to hope that mY is a simple group. For the vertices o, 3, v, d of Y,
we denote the local groups by P,Ek) (), P,S’“)(a), P}gk)(ﬁ)7 ..., where k € N.

Example 54. Let Y be the 4-vertex complex illustrated in Figure 15.

Theorem 54. Let Y be the 2-dimensional cell complex of Figure 15 with four vertices «, B, v

and 6. Then

(1) Lk(a) = Lk(B) = Lk(y) = Lk(5) = K34 (complete bipartite graph). Y = Tz x ;.

(2) Pa(a) = Pu(0) = So, Pu(B) = Pa(y) = Ss. Py(a)

(3) Y is irreducible.
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Ab
> > > > > >
a9 a9 a9 aq aq a1
Aby 7 Ab 3 Vb 94 Yb3s 15 Aby 4 Vb 8 Vb
< < < < < <
a a as aq [¢5) as
Ybs 10 Ab 18 Abs 11 Ybi 2 Aby 921 Abs 11 Yh
< < < > > <
a2 a2 a1 a2 a2 a1
Yby 1 Ab 5 Aby 13 Ybs 17 Ybi 9 Abs 14 Vb

S 4

A b3

\ A%}
< < | < | |
a1 a1 a2 a1 a2 a2

Ybs 10 Ab 18 Abs 23 Aby 13 Vb3 17 Ybi g9 Ab;

Sh 4
Sh 4
S 4

Ab

Figure 14: A non-periodic tiling of the plane determined by the anti-torus (aj,b;) in I's 5

(4) mY is a perfect group.
(5) Fd * Fgg’]TlYgFQ * g FQ.
Proof. (1) It can be directly read off from Figure 15.

(2) This follows from the definitions (see [16, Chapter 1]) and Figure 15. Note that for example
Pn(«) and Py (B) could a priori be different, since a and 3 are not in the same connected
component of the vertical 1-skeleton of Y. For an example where indeed P, () 2 P (3), see
Example 57.

(3) We compute
P@ ()| = |PP(3)| = |P2 )| = |PP6)] =24 6*.

The claim follows now from an obvious generalization of [16, Proposition 1.3] to the case
where the horizontal 1-skeleton is not connected.
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1) cy v c1 C1 C2

dy Ab d% Aby ds Abs dy Aby
Qo aq I6] aq ai ai
Co Co C3 C1

dy Ab d% Ab, d Abs dy Aby
asy Qs a2 as
C3 C3 Co C3

ds Ab d% Ab, d Abs d Aby
as as as as

Figure 15: The 4-vertex square complex Y

(4) This follows directly from one of the presentations of mY given in the proof of part (5).

(5) We give three “different” presentations of mY and the corresponding isomorphisms. If we
choose the vertex « as base point and the edges aq, b1, d; as “spanning tree” in the 1-skeleton
of Y, we immediately get the following presentation of 71 (Y, «):

m1 (Y, ) & (ag, as, ba, b3, ba, 2, c3, da, ds, dy |
by = da, b3 = d3, by = dyca,
as = c2, asby = dsca, agbs = dacs, asby = du,
as = dgcs, aszby = dacs, asbs = daca, asbs = c3),
i.e. after replacing co, ds, ds by asa, bs, bg respectively
m1 (Y, ) = (ag, ag, ba, bs, by, c3, dy |
by = dyaz, azby = bzaz, azbs = bacs, azby = da,
az = bzcs, azby = dycs, azbs = baaz, azby = c3),
The two decompositions of 1Y as amalgamated free products of free groups follow from
[69, Theorem 1.1.18].
F3#p, Fy = (ba, bs, ba, do, ds, dy |do = by, d3 = b3, dj = b3,
dydzdy ' = baboby ",
dyd3dy ' = bybsby 'b3by !,
dady tdydadyt = bybg  baby tb3by !,
dydy tdzdady ™t = bybs 'by tbsby ).

147



4 —1
Fy sp, Fy = (az, as, c2, ¢3 |ag = c2, az = ¢3¢y 3C2C3,
—1 —2 —1 —1 —1
G5 Q203" = C3 CaC3 C2C3

1

-1 —1.-1 2 ~1.3
a3a2a3° = C3C5 C3°, Q30203 = C3C5 C3).

Isomorphisms between these three groups are given as follows:

7:1 1\ FQ*F5F2 <i> 7T1(Y,Oé) <i> Fg*F7F3 % 73
ag < as — d4b21
az <—— as — d2d21b4b§1
a51a30§102 — bQ — b2
a303_1 — bg — b3
a3_103 — b4 — b4
Cy Co — d4b21
C3 <— C3 — d;ldzlbd)g
ay tazcztcs do — ds
a303_1 — d3 — d3
a2a3_103 — d4 — d4.

Question 15. Is it true that mY does not have proper subgroups of finite index?
Question 16. Is mY non-residually finite?

Question 17. Does every non-trivial normal subgroup of m1Y have finite index?
Question 18. Is mY simple?

Remark. We have checked with GAP ([28]) that (w*)).,y = mY, where k = 1,...,8 and w is
any generator of m1(Y, ) in the first presentation given in the proof of Theorem 54(5).

7.2 More 4-vertex examples

We give several examples of a certain class of 4-vertex square complexes. In all examples, the
complex will be denoted by Y. The 1-skeleton of Y and a typical geometric square of Y are
illustrated in Figure 16, i.e. we always have four vertices «, 3, 7, &, horizontal edges a1, as, as
(oriented from « to ), ¢1, c2, c3 (oriented from & to 7), and vertical edges by, ...,bs (oriented
from @ to ), di,...,ds (oriented from « to ). Each of the 18 geometric squares is of the form
a;b; = dici, (see the right hand side of Figure 16), and the universal covering space Y is T3 x Tg.
By construction of the 1-skeleton and the geometric squares of Y, we have for each k € N:

P (a) = PP (s), PP (B) = PP (7), PF(a) = PP (8), PP (y) = PP (5).

Example 55. ((1, Ag), reducible)
Let Y be given by its geometric squares

a1by = dici, aiby =dsci, aibz =dsci, aiby =dsc1, aibs =dsc1, aibs = dgen,
asby = dica, asby = daca, asbz =dzca, agby =dsca, asbs =dgca, azbs = daco,
asby = dpc3, asby =dzc3, asbz =dsc3, aszby =dics, azbs =dgcs, azbs = dscs.

Then Py(e) = 1, Po(8) = 1, Py(e) = Ag, Po(y) = Ag, PP () =1, PP (8) = 1, PP (a) = A,
PP ()= A
0 (7) 6-
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a;

Figure 16: The 1-skeleton and a typical geometric square of Y’

Example 56. ((Zs, Ag), irreducible)
Let Y be given by its geometric squares

arby = dici, a1by =dsc1, a1bz =dzci, aiby =dyc1, aibs =dsc1, aibg = dgen,
asby = dica, asby = daca, axbz =dsca, asby =dsca, asbs =dgca, azbs = dacs,
azby = dpca, asby = dscz, asbz =dsc3, aszby =dscs, azbs =dics, azbs = daco.

Then Py(a) & Za, Py(8) & Zo, Py(a) = As, Po(7) = 46, |P7 ()] = 4, |PP(8)] = 4, [P (a)] =
360 - 609, | PS?) (v)| = 360 - 60°.

Example 57. (Py(a) # Py(06), |P,52)(a)| = | Py ()|, irreducible)
Let Y be given by its geometric squares

arby = dici, aiby =dsc1, a1bz =dzci, aiby =dsc1, ai1bs =dsce, aibs = dgcs,
asby = dica, asby = dscy, asbz =dsca, asby =dsc2, a2bs =dacs, azbs = dscy,
azby = dscs, asby = dic3, asbz =dsc3, aszby =dsc3, azbs =dgc1, azbs = daco.

Then |Pu(e)] = 6, [Pa(8)] = 3, Pu(a) = Ag, Po(y) = As, PP ()| = 6, [PP(B)] = 24,
1P (a)] = 360 - 609, | P2 (v)] = 360 - 60°.

Example 58. (Py(«) # Pn(B), P,(a) # Py(7))
Let Y be given by its geometric squares

arby = dici, aiby =dsci, aibz =dzci, aiby =dsce, aibs =dsce, aibs = dgcs,
asby = dica, asby = dscy, asbz =dsc3, asby =dscs, axbs =dgc1, azbs = daco,
azby = dpcs, asby = dscz, asbz =dgca, aszby =dsc1, azbs =dics, azbs = dsc.

Then |Pp(cr)| = 3, |Pr(B)] =6, |Py(a)] = 360, [Py (7)] = 120.
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A Supplement to Section 2

A.1 More (Ag, P,)-groups
Example 59. (Ag, PSL2(5))

alblaflbfl, albgaglbgl, a1b3a1b51,
R(3,3) := albglaglbg, a2b1a3b2_1, asboasbs,
a2b3a3b;1, a2b§1a3b§1, agb;1a3b1
pv(bl) - (274)(3a 5)7

p'u(bQ) = (176a573)(
p'u(b3) = (172a476)(

)

2) 4 )
3,5),

Ph(al) - (273)(4a 5)7
prlaz) = (1,3,4,5,2),
pr(as) = (2,3,4,6,5).

Example 60. (Ag, PGLy(5))
alblal_lbl_l, albgaflbgl, a1b3a2_1()2,
R(3,3) := a1b§1a2b51, agblaglbfl, agbgaglbl,
a2b3a3b3, agbflaglbg, a3b2a3bgl
pv(bl) - (2a 3)(47 5);

pv(b2) = (1;574a372>a
pU(b3) = (256755374)5

ph(al) = (2; 47 5; 3)7

Ph(a2) = (2; 47 3; 57 6);
ph(a/?)) = (15 57 4) 37 2)
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Example 61. (Ag, Ss)

131 131 1,1
arbia; by, aibsay by, aibsa; by,

1 -1 1,1 1,1

R(3,3) .= aibs a3 b3, asbiagy by, asbsaz b3,

- —1 -1
azbzaz lbl, azb; “asby , asbiasbs

pfu(bl) = (2,4,3),
pv(bQ) = (375a4)7
pv(b3) - (172a3)(476a 5)7

pr(ar) = (),
ph(a‘Q) - (175a673a2)7
ph(a3) - (174a 5)(276>

Example 62. (4, AGL1(8))

—1p-1 —1p-1 131
arbias by, aibsas by, aibsa; by,

a1b4a2_1b4, albzlaglbg, a1b3_1a352_1,
R(3,4) :

-1 - -1 -1 —1
a1b; 1a2 lbl, a1by “ay b3, agbsag bo,

agblaglbll, a3b2a3b3, a3b4aglbf1
pv(bl) - (17 2)(5a 6)7

pv(bQ) - (17 4,3, 2)(5a 6)7

p’U(b3) = (17 2)(35 67 5) 4)7

p’U(b4) - (17 2)(55 6)7

Ph(al) - (276a877a 574a3)7
pnlaz) = (1,2,4,5,6,7,3),
pr(az) = (1,4)(2,6)(3,7)(5,8).
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Example 63. (A4s, AT'L;(8))

R(3,4):

Example 64. (Ag, PSL(7))

R(3,4) :

—1;—1
airbsay by,
-1, -1
a1b3 a362 5
-1 —1;-1
azby "ag b3,

-1
a3b4a3 b2

ph(a’l) = (17857755473)(256)7
prlaz) = (1,2,4,5,6,8)(3,7),

ph(ag) = (2, 5, 6)(3, 7, 4)

—1
arbaay by,

aszbiaz by, asbaasbs,
pv(bl) - (17 2)(5a 6)7
pu(b2) = (1,4,3,2)(5,6),
p’U(b3) = (17 2)(35 67 5) 4)7
p?)(b4) = (17 2)(55 6)7

Ph(al) - (276a8)(477a 5)7
pnlaz) = (1,7,3)(2,4,5),

albzlaglbg,

arby tay ths,

—13-1
a1b3a2 bg 5
-1 -1
arby “azb; ",
bsaz ‘b
agb3a3 02,

as b4a§ 1 bl

pr(az) = (1,5)(2,6)(3,7)(4,8).

152




Example 65. (A, PGLy(7))

R(3,4):

Example 66. (Ag, Ag)

R(3,4) :

—1;—1
a1b1a2 b3 5
—1
aibsay by,

albg_la;lb;g,

—1;—1
a1b1a1 bl 5
—1;—-1
arbsas "by; ",

—1
a2b2a3 bg,

-1 -1
a2b2 1@3 b3,

—1
aibaay by,

-1 _—-1
a1b4 Ao bg,

—1_—1;-1
a1by fag b1,

—1;-1
albgal b2 ,
-1 -1
a1by “ay ba,

asbszaszby,

—1;-1
a3b3a3 b4 ,

—1;—1
airbsay by,
-1 -1
a1b3 a362 5
biaz'b
az01a3 01,

as b4a§ ! b;l

asbsaz 'ba,  asboasbs,
po(b1) = (1,3,2)(4,6,5),
po(b2) = (1,4,3,2)(5,6),
pv(b3):( ) (3 6,5 4)
po(ba) = (1,2)(5,6),
ph(al) = (1,8,2,6,7,5,4,3),
ph(ag) = (1,7,3,2,4,5,6,8),
pr(as) = (1,8)(2,6)(3,7).

—1;—1
a1b3a1 bg 5
—1;—1
azbias by,
—1 —1
a2b3 agbl ,

as b4a§ 1 bl

po(br) = (2,5,4),

pu(b2) = (2,3)(4,5),

pv(b3) = (2,5,3),

pu(bs) = (1,2)(5,6),

prla1) = (),

pr(az) = (1,6,7,2)(3,8),
pnas) = (1,5,6)(2,7,8,4,3).
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Example 67. (Ag, Ss)

R(3,4):

Example 68. (Ag, PSL2(9))

pu(b1) = (2,5,4),
pu(b2) = (2,3)(4,5),
pu(b3) = (2,5,3),
pu(ba) = (1,2)(5,6),

ph(a2) = (1

765 77 2)(35 8)7

—1;—-1
airbsaj by,
—1;—-1
a2b1a3 bQ 5
-1 —1
a2b3 agbl s

-1
a3b4a3 b1

pn(as) = (1,5,6)(2,7,8,4,3).

—17-1
a1b1a1 bl s
—17-1
arbsay by,
-1 -1
a1b; “ag bs,
bsasby
a205a20¢

—1;-1
a3b3a3 b2 y

pu(b1) = (2,5)
pu(b2) = (2,5)
pu(bs) = (1,3)
Pv(b4) = (1a 2,
pu(bs) = (2,6,

—1;—-1
a1b2a3 b3 5
—1;—-1
a1b5a2 b4 s
braghy
a201a204
—1 —1
a2b4 a2b3 5

—1
a3b4a3 b5 s

—1;—1
a1b3a1 bQ s
b tagh
4105 G204,
azbaasbs,
brasby
asz01a30, -,

a3b5a371b4f1

Ph(al) - (2a 3)(47 5)(6a 7)(87 9);
ph(a2) - (1a 5,4,8, 2)(3a 7,6, 10, 9);
pr(as) = (2,3)(4,5)(6,7)(8,9).
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Example 69. (Ag, S < S1o)

R(3,5):

Example 70. (Ag, PGL2(9))

—1;-1
a1b1a1 b2 5

arbsai by,
a2b1a3_1b3,
asbsasby
a3b3a§1b2_1,
pv(bl) - (2a 574)
pu(b2) = (),
p’U(b?)) = (2a 5, 3)
p’U(b4) = (la 2, 5)
pv(bS) - (2a 6, 5)

arbaai 'bs,

a1b5a§1bgl,
a2b2a2_1b2_1,
a2b21a2b§1,

—1
a3b4a3 bl,

-1
a1b3a1 bg,
b tash
a105 G204,
azbsazbi,

—17—1
a3b2a3 b4 ,

-1
a3b5a3 b5

pn(ay) = (1,7,6,2)(3,8)(4,5,9,10),

pn(az) = (1,5,4,8)(3,7,6,10),

pn(az) = (1,7,9,8)(2,3,10,4)(5,6).

—1;—1
alblal bQ ,

131
arbsal by,

Gleaglbg,

asbsasby !,

a3b3a§1b§ ,
pv(bl) = (2a 574)a
pU(bQ) = ()a
pv(bg) = (2a 5, 3))
pﬂ(b4) = (1a 2, 5>a
pﬂ(bS) = (2a 6, 5>a

albgaflbfl,
a1b5a2_1b21,
Gngaglbgl,
agbzlagbgl,

—1
asbsaz by,

-1
aibzay "bs,
-1
a1bs "asby,
asbzaszby,
boaz 1b
azbzas 05,

azbsaz 'b;

ph(al) = (L 2)(37 8)(45 5)(6’ 7)(95 10),

pr(az)

(1,5,4,8)(3,7,6,10),

pnlas) = (1,7,6,2,3,10,4,5,9,8).
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Example 71. (A4, Mio)

R(3,5):

Example 72. (Ag, PT'L2(9))

—1;—-1
a1b1a1 bl y

—1;—1
a1b4a1 b5 s

—1p-1
arbaa; b3,

—1p—1
a1b5a2 b4 5

a2b1113_1b2_1, asbaasbs,
agbZIGngl, a2b51a3b1,
a3b3a3b3_1, a3b4a§1b1_17

pv(bl) - (2a 574)a

pv(bQ) - (2a 3, 5>a

p’U(bB) = (25 5)(374)5

p’U(b4) - (1; 27 5))

pv(bS) - (2a 6, 5>a

—1;—1
airbsaj by,
a1z tasb
105 a204,
bsagh; !
a205a2071 -,
—1;—1
a3b2a3 b5 s

—1;—1
a3b5a3 b4

Ph(al) = (2a 3)(47 5)(65 7)(8’ 9),
pnlaz) = (1,5,4,8,2)(3,7,6,10,9),

pn(as) = (1,4,5,2)(6,9,10,7).

-1
arbraj by,
—1,-1
arbsay “bs 7,
—1;-1
a2b1a3 b2 s

-1 -1
a2b4 a2b3 y

asbsasbs ",
po(b1) = (2,5,4),
pu(b2) = (2,3,5),
pu(bs) = (2,5)(3,
po(bs) = (1,2,5),
pu(bs) = (2,6,5),

ph(al) = (L 10)(27 3)(45 5)(6’ 7)(87
ph(a’Q) - (1a 5,4,8, 2)(3a 7,6, 10, 9);
prlaz) = (1,5,7,2)(4,9,10,6).

—1;—1
albgal b3 5
—1;—1
a1b5a2 b4 s
azbaasbs,
by tasb
@205 "a301,

—1
a3b4a3 b5,
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—1;—1
a1b3a1 bQ 5
by Lagh
a105 G204,
bsasby !
a205a204
boaz b
a302a3 04,

azbsaz 'by

),




Example 73. (Ag, A1o)

arbra; oyt arbaa byt arbsas thyl,

a1b4af1b;1, a1b5af1bgl, albglaglbg,
R(3,5) := a2b1a3_1b1_1, a2b2a3_1b2, a2b4a§1bg1,

a2b5a2bgl, agbg1a3b4, agbglaglbl,

asby taz byt asbzaz'byt, azbsaz byt

pv(bl) = (2a 3)(47 5);

pv(bQ) = (2a 3)(47 5);

p’U(bB) = (15 2)(57 6))

p’u(b4) = (2; 574)5

pv(bS) = (2a 3, 5>a

pr(ar) = (2,4)(7,9),
pnlaz) = (2,10,9)(4,5)(6,7),
pr(az) = (1,2,9)(3,5,4)(6,7,8).

Example 74. (Ag, S10)

alblal_lbl_l, albgal_lb4, a1b3a2_1()§1,
a1b4a1_1b2_1, a1b5a1_1bg1, albglag_lbg,
R(3, 5) = agblaglbfl, a2b2a§1b2, a2b4aglbg1,
a2b5a2b21, agbg1a3b4, agbglaglbl,
asby taz byt azbsaz'byt, asbsaz byt

pu(br) = (2,3)(4,5),
pu(b2) = (2,3)(4,5),
pu(b3) = (1,2)(5,6),
pu(bs) = (2,5,4),
pu(bs) = (2,3,5),

pn(ar) =(2,4,9,7),
Ph (aQ) - (2a 10, 9)(4a 5)(67 7);
pn(as) =(1,2,9)(3,5,4)(6,7,8).
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Example 75. (Ag, PSLs(11))

R(3,6) :

—17—1
(111)10,3 b2 y
—17—1
a1b4a1 b3 s
by tagh
a107 ~a202,
—17—1
azbsas by,
by tash
a20¢ "a30b2,

—1;-1
a3b4a3 b4 y

2,5)(3,
);
; (

)

(2,
(
(
(
(2,5
(2,5

4),

)

—17—1
arbaa; by,
—17—1
a1b5a1 b6 5
braghs !
a201a205
asbsazbe,
brasgbs !
a301a303

aszbsaszbg,

2,6,4,3,5),
1,3,4,2,5),

—1;—1
airbsai by,
—1;—1
a1b6a1 b5 5
bsagh: !
a203a205
-1 3-1
agbG a2b2 s
bsasb; *
azbzazbs -,

a3bgla3b§1

(1,2)(3,4)(5,6)(7,8)(9,10)(11,12),

=(1,2,7,5,3)(6,11,12,10,8),
=(1,2,7,5,3)(6,11,12,10,8).
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Example 76. (Ag, PGL2(11))

alblaflbgl, albgaflbf, a1b3a51b1,
a1b4af1bg1, a1b5af1b§1, albgaflbgl,
arby tazby!,  asbiashs, agbsagbs !,
R(3,6) :=

a2b4a§1b11, asbsasbg, agbglagbgl,
asby tazbyt,  asbiasbs, azbzazbs ',
a3b4a371b;1, a3b5a3b6, a3bgla3b§1

p’U(bl) - (1; 47 3) 57 2))

p’U(bQ) - (2; 5)(374)5

pv(bS) = (2; 47 3; 67 5);

pv(bs) = (),

p’U(b5) = (25 5)(374)5

p’U(bG) = (25 5)( 74)5

Ph(al) = (1a 10,8,7,9,11,12,3,5,6,4, 2)7
pnlaz) = (1,10,8,6,11)(2,7,5,3,12),
ph(a3) = (1, 10,8, 6, 11)(2, 7,5,3, 12).
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Example 77. (Ag, A12)

R(3,6):

-1
arbaaz b1,

—1;—1
a1b5a1 b6 ,

by tagh

@101 "a202,

—1;—1
azbsas by,

agbl_laglbg,

asbsas by, a3b5a3bg1,
po(b1) = (1,3)(2,6,4,5),
po(b2) = (1,3,2,5)(4,6),
pu(bs) = (2,5)(3,4),
pu(bs) = (),
pu(bs) = (2,5)(3,4),
pu(bs) = (2,5)(3,4),

—1;—1
airbsai by,
—1;—1
a1b6a1 b5 ,
brasb; !
az01a205
azbsasbg,
bsasbs *
az03a303 -,

a3b6a3bg1

pnlay) = (2,11,12)(3,4)(5,6)(7,8)(9, 10),
pnlaz) = (1,2,7,5,3)(6,11,12,10,8),

pnlaz) = (1,11,2).
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Example 78. (A4g, S12)

R(3,6) :

—1 —1
arbiay b2,  aibaazby -,

—1;—1 —1;—1
a1b4a1 b3 s a1b5a1 b6 5

albg_la;lbl, a2b1a2b3_1,

—1;-1
a2b4a2 b4 y a2b5a2b6,

-1 -1
agbl agbg, a3b1a3b3 5

11
asbsaz by ", asbsasbs,

—1;—1
airbsai by,
—1;—1
a1b6a1 b5 5
bsagh: !
a203a205
-1 3-1
agbG a2b2 s
bsasb; *
azbzazbs -,

a3bgla3b§1

ph(a’l) = (1a 2,12, 11)(37 4)(5a 6)(77 8)(9a 10)7
p}l(ag) = (1, 2,7,5, 3)(6, 11,12,10, 8),
p}l(ag) = (1, 2,7,5, 3)(6, 11,12,10, 8).
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Example 79. (Ag, PSL2(13))

—1;—1 —1 —1;—1
arbia; by, aibsasgb; 7, airbsai by,
—1;—1 —1;—1 —1;—1
a1b4a1 b3 s a1b5a1 b6 5 a1b6a1 b5 5

—1p—1 -1 -1 —1
arbra; "b; 7, a1by Tay b1, asbiagzbs

o —1 —1;-1
R(3,7) := < asgbsasbs *, asgbsas by, azbsasbs,
-1 -1 -1 -1
a2b7a2b3 s a2b6 a2b2 5 agbl a3()27
-1 —1 —1;—-1
a3b1a3b7 y a3b3a3b5 s a3b4a3 b4 s
bsasb brazbs ! bg tasby
a305a30¢, a307a303 a30g ~ 4309

pu(br) = (1,4,3,5,2),
pu(b2) = (2,5,6,3,4),
pu(bs) = (2,5)(3,4),
po(bs) = (),

pu(bs) = (2,5)(3, )
pu(bs) = (2,5)(3,
po(br) = (2,5)(3

prla1) = (1,2)(3,4)(5,6)(9,10)(11,12)(13, 14),
ph(a’Q) = (17 2,9,5,3, 7)(6’ 13,14, 8,12, 10)7
pnlas) = (1,2,9,5,3,7)(6,13, 14,8, 12, 10).
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Example 80. (A4s, PGL2(13))

alblaflbgl, albgagbfl, a1b3af1b7,
a1b4af1bg1, a1b5af1b5, albgaflbll,
a1b7a1_1b3, albg_lag_lbl, agblagb;l,
asbzasby ', asbaay by, asbsasbe,
a2b7a2b§1, agbglagbgl, a2b1_1a3bg,
agblagb;l, a3b3a3bg1, a3b4a§1b4j1,
a3b5a3b6, a3b7a3b§1, a3bg1a3bgl

(1,4,3,5,2),

(2,5,6,3,4),

(2,5)(3,4),

0,

(2,5)(3,

(2,5)(3,

(2,5)(3

= (1,2)(3,8)(4,6)(5,10)(7,12)(9,11)(13, 14),
=(1,2,9,5,3,7)(6,13,14, 8,12, 10),
=(1,2,9,5,3,7)(6,13,14,8,12, 10).
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Example 81. (Ag, A14)

—1;—1 —1 —1;—1
arbia; by, aibaasb; 7, airbsai by,
—1;—1 —1;—1 —1;—1
a1b4a1 b3 s a1b5a1 b6 5 a1b6a1 b5 5

—1p—1 -1 -1 —1
arbra; "b; 7, a1by Tay b1, asbiagzbs

o —1 —1;-1
R(3,7) :={ asgbsasbs *, asgbsas by, azbsasbs,
-1 -1 -1 -1
a2b7a2b3 s a2b6 a2b2 5 agbl a3()27
-1 —1 —1;—-1
a3b1a3b3 y a3b3a3b5 s a3b4a3 b4 s
bsasb brazb; bg tasby
a305a30¢, a3z07a307 a30g ~ 4309

pu(br) = (1,4,3,5,2),
pu(b2) = (2,5,6,3,4),
pu(bs) = (2,5)(3,4),
po(bs) = (),

pu(bs) = (2,5)(3, )
pu(bs) = (2,5)(3,
po(br) = (2,5)(3

pnlar) = (1,2)(3,4)(5,6)(9, 10)(11, 12)(13, 14),
ph(a’Q) = (17 2,9,5,3, 7)(6’ 13,14, 8,12, 10)7
pnlas) = (1,2,9,5,3)(6,13, 14, 12, 10).
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Example 82. (Aﬁ, 514)

alblaflbgl,
a1b4af1b§1,
arbray by,
R(3,7) == agbzasb; ',

asbrasby ',
azbiazby ',
asbsasbs,

pulbr) = (1,4,3,5,2),

pulba) = (2,5,6,3,4),

po(bs) = (2,5)(3,4),

pv(b4) = ()7

pu(bs) = (2,5)(3,

pu(bs) = (2,5)(3,

pv(b'T) = (275

—1
arbaasby -,
—1;—1
a1b5a1 b6 5

-1 -1
a1b2 ag bl,
—1;—1
azbsas by,
—1 —1
a2b6 a2b2 5
3bgazbs !
aszbzazods -,

—1
asbrasb;

—1;—1
airbsai by,
—1;—1
a1b6a1 b5 5
braghs !
az01a207
azbsazbe,
by tasb
a20, "a3v2,
—1;—1
a3b4a3 b4 s

a3bg1a3bgl

pr(ar) = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13, 14),

pn(az) =
ph(a?)) =
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(1,2,9,5,3,7)(6,13, 14, 8,12, 10),
(1,2,9,5,3)(6,13,14, 12, 10).




A.2 Amalgam decompositions of Example 1

We first give the vertical decomposition of I' of Example 1:

b) (v,8)
T2 FO % e B
3 F1(3' ):Fl(z' T

Fév’b) = (b1, ba, b3), Fé”’s) = (s1, S2, $3, S4, S5, S¢, S7). The inclusion Fl(g’b) — Fév’b) is given by the

description of Fl(;j’b) as a subgroup of Fév’b) of index 6:

FP = (by, bs, babs 'ba, by 'b3 "b2, by "b1b2, by by b2,
boby 2by !, bobsby thyt, b3bT byt by B by
bab1b2b3, by 2bs 1b1bsb3, by 2bs tbabsbl),

the inclusion Fl(g’s) — Fé”’s) by

(v,s) _ -1 -1 -1 -1 -1
F13 - <51; 52, S6, S4 83, S5 83, Sy 83, S783 , S553

1 1, 1 2 1 —1
$483 ", S5 S6S3 , S5, S5 S183, S5 S283).

The identification

PGP & R
bl — S1
b «—— 53
bgbglbg «—— Sg
bylbz '3 —— sy tss
by 'b1b3  ——  s5lss
by o3 ——  silsy
bob%byt e s7syt
bgb3bl_1b2_1 — 5553_1
bbbyt e sysyt
bbbyt ——  s3lsesy
b2_2b§1blbgb% — 53_15153
b2_2b§1bgbgb% — 53_15253

leads to the following finite presentation of I':

generators(I') = {b1, bo, b3, s1, 2, S3, S4, S5, S6, S7},

by = s,
bs = so,
bgbglbg = Se,
bythy'b: = splss,
bythib2 = s5lss,
by o7 = solss,
relations(I") = boby %by ' = sysyt,
b2b3b;1b;1 = 8583,
b3ty = sasyl,
by 3b byt = sy lsesy
bgblbgbg = S%,
ngbglblbgb% = 5:;15153,
b2_2b§1b253b% = 53_15253
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In a similar way, we can describe the horizontal decomposition of

(h,a)

h,u)
I'= F. * _(h,a) 0 m(hyu F(7 .
3 pip e B

generators(I') = {a1, ag, as, u1, us, us, ug, us, ug, U7},

ap = Ui,
ag = usur,
agagg = u7ug1,
adaraz® = wsujugt,
a3a1a§2 = ungl,
a3a2a§2 = uglugl,
relations(I") = adaray' = usua,
a%agagl = Usug,
agagalag =  Usu2,
agagagag = u5u6_1,
alad = ul,
a;lagaglagg = u4ug1,
a;lalaglagjg = U3ug1

We recall the relators R(3,3) of Example 1:
alblaflbfl, albgaflbgl, albgagbgl,
R(3,3) :=1{ aibzlaz'bs, asbiaz'byt, agbeas by,
agbgaglbl, a2b§1a3b2, agbflaglbfl

Explicit isomorphisms between the three given presentations of I' are:

F st B E b RB.3) S B s B
S3b§2b§1 — aq — a1 = U1
b3b2821b2 — as —— a9

bQSZIb% — as «~—— as
S1 = b1 — b1 — U;lag
by «— bo —  aguy a3
SS9 = b3 — b3 — a%u;la;g
S3 < a1b3b% = b2b1b3a;1
Sq4 a1b§b2 = b%b3a1_1
55 a1b3by tby = bobda;?
Sg bgbglbg
s7 a1bsb1by = boby tbza;
a3a1a3b;1 = blagalag — U2
a5 taray byt = bi(azazaz)”' — ug
a;lagaglbl_l = blaglalagl — Uy
agbfl = blag —  us

—1 —1 —1
(bragazaz) ™" = bias azag —  ug
agbfl = bla3 ——  Uur.
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With this identification, the abelianization map I' — T'% 22 72 is now

Uz, U3, Ug, Us, Ue, U7 —

The vertical amalgam decomposition of I' described above gives a natural action of I' on the
first barycentric subdivision 7 of T2, = Ts. See [66, Chapter 4] for the general theory about
amalgams and their action on the corresponding tree. Let P be the vertex of 7 stabilized by
Fév’b) = (by,b2,b3). The local action of I' = pr;(I') < Aut(Z2m) on S(zn,1) in T, ie. the
homomorphism p, : (b1, b2,b3) = Pr < Sa,, determined in the proof of Theorem 1(1), can be
reconstructed by the action of Fév’b) on the set of edges of 7] originating at P. These edges are
labelled by right cosets Fl(g’b)gi, 1=1,...,6,9; € Fé”’b), such that

6
9 = | | Fs

i=1

The group Fév’b) = (b, ba, b3) acts by right multiplication on the set of right cosets {Fl(g’b)gi}izlw,ﬁ.
If we choose g1 = 1, g2 = bab1ba, g3 = (bgbl)Q, gs = bab1, g5 = ba, gs6 = bab1bs and make the
identification Fl(;j’b)gi — 4 fori=1,...,6, then we exactly get back our p,:

pv(bl) - (2a 3)(47 5)a

pv(b2) = (]-; 57 4; 27 3);
pu(b3) = (2,3,5,4,6), generating Py, = Ag.

In the same way, we compute the action of Féh’a) = (a1, a2, az) by right multiplication on right

cosets
F = P | 8 020, U S a2 0 FEYag 1 F Y agay U FG ™ ag

and recover py, : (a1, a2,a3) - P, < Sa, = Sg:

ph(al) = (2a 3)(47 5),
ph(a/Q) - (15 67 3) 2)(47 5))
pr(as) = (1,4,5,6)(2,3), generating P, = Ag.

168



geometric squares:

) ais

)

bla

)

o
} »
(=
=
sy

e
=
2
@

as,s

=
N
S
<
)

b377

al,a

asz.s

b1

i »
j=l
©»
sy

a2 o

1,y

P
} >
S
=
@
|
5; >
S
»
®
P
} >
=
N
@

bl,a
a3
a3, ~
b375 \ 4 bzﬁ
a1
a3 ~

S
W
Q

=
J—‘
2

i~y
©»
o

;; |
o
(V)
Q
o

} L
i~
©
sy

by s

b2,o¢

bl,a

—

o

(=2
;; <
=

J_‘

=

Q
i
>

A bgﬁ

1,0

as.s

5 E |
~
w
)
o
} L
o
N
@

A 13
a2,a
as,y

Y b3
a2 o
1,y

ai,p

a3,y

A bgﬁ

;E |
} »
j=l
©»
sy

az,5

as,s

y bQ,W

a2,8
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The cell complex X, of Example 1 corresponding to I'y is given by the following 4 -9 = 36

A2,y

)

a1,

as,s

a2,a

asz.s

bl,a

bl,v

]

a2,o¢

a25

b3,o¢

aip

a3,y

b2,oz

az,3

as,y

bis

az,3



bl,v

[
—
%
<«
S; K|

a a, B

a1

]

b2,a bB,B
a3,a
az,s

bl,a \ 4 bgﬁ
as o
1,y

b175 I \ 4 blﬁ
ai,g
1,y

637% Abyg
as,p
A2,y

b375 I A blﬁ

as,s

b3

by s

=
N
Q

S
N
>

b3,a

(3
\ A
afl,a
ass
Ej bl”y
a3,a
[OF)
% Absg
as,p
A1y
% Y b3

Q
-
@

a2,y

<«
SE ) £
=
»
2

as,p

A2,y

A bgﬁ

]

a3,a

ba.s

S
w
S

)

ba.s

bl,a

ais

Y b3,
az,p
azs

Ej b27/y
a3,a
azs

% Abig
as o
1,y

Y by
a2,o¢
A2,y

% \ A
as,p
A2,y

% Y b1y

as,s

Figure 17: X of Example 1
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The decompositions of I'g are:

(v,m) (v,9) ~ ~ gn(ht) (h,w)
F5 *F;f;"”%F;E;"” F5 = FO = F5 *FQ(;L’”’%FQ(;,L’W F5
(v,m) (v,9) : ;
where F5 = <T1; r2,73,T4, 7ﬂ5>7 F5 = <¢I1; 92,43, 44, QS> The inclusion

defined by

)

Fy

(v,r) —1,—1 —1,—1 -1 -1
F25’ = <7’2, rs, '3, 7’17"57’3 7"1 s 7’17"47’3 7"1 y 7’17"37’1 s 7"1 rsT1,

—1 -1 —1 —1 -1,.—-1 -1
Ty T3Tr1, Ty T4T1, Ty T2y T4 T T4, Ty TsT1T4,

—1,.—1 —1 —1 —1 —1
Ty T T2T4, T4T1Ty —, T4T2Ty , T4T5Ty , T4Ty T4,

—1,,—1 —1,,—1 —1,,—1
T4T3T2T1, T4T3TaTg T4, T4T3T5Tg T4, T4T3T1T3 T4

2 2 -1,.-1 2
TYTITA, TIVSTT, TAT3T s Ty, TAT3T1T4)

and the other inclusion F{'? — F{"? by

FE? = (q1, g5, @4 020205 ", 20305 5 4245 05, 45 a5 4o,
05 a3 a2, 45 V03 T s a2, 43 P nas b, 43 Va5 g,
-1 _—1 —1 -1 _—1 -1 -1 _—1
43 92 493, 93 9193, 439291 43 , 49345 41 43
439195 4305 "G5, 439104919392, 9301940395 41 a5
4391940595 “q1 " a5 Yy 4391049205 Ty T4z s a3 q1ds,
B39, 2Od a e G0dies)-

We obtain a finite presentation for the vertical decomposition of I'y:

generators(L'o) = {r1,72,73,74,75,¢1, 92,43, 44, 45 },

relations(Iy) =

)

s

T3
7°17°5r3_17°1_1
7"17"47’3_17"1_1
rlrgrfl
rf1r57°1
rl_lrgrl
rl_lr47°1
7"1_17’27"1_1
r;lrf1r4
r;1r5r1r4
7“217“1_17“27“4
7“47“17“4_1
7’47’27"4_1
7’47’57"Zl
7“47“;17“4
T4r3raTy
r47"37"47’3_17"4_1
r47"37"57’3_17"4_1
r4r37"1r§1r;1
TiT1T4

7“17“37“%
r17"37"27’3_17"4_1
7”47”%7’17”4
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q1,
qs,
qa,

1
q2444s
429395 "

-1 -1
42495 45
-1 _—1
4y 43 g2,
QQ_1Q3,_1Q4(J2,
@ a5 4500,
4 tqigs "
-1 _—1
43 45 43,
—1 -1
4 a5 s,
4 143,

1 -1
43492497 43
4305 'y eyt
B
4305 3+
434194491434G2,
4301910395 45 a5
4361910595 a7 a5
301910205 ' q7 a5
Q3(J1Q§7
4349392,
YT P T
43019393

;“”) — Fév’r) is



The horizontal decomposition of I'y is:

generators(Iy) = {w1, wa, ws, we, ws, t1,to, ts, ty, t5},

wws = laly,
wwi = tot?,
w3 = t3;
wlwgwfl = tgtgtgl,
wawyt = sty
wiwy = toly,
wytwiwy =ty ttats,
wytwytwy =ty 'tits,
w;1w5w4 = tglt3t5,
wy twy twy =ty Hats,
wiwy 2 = toty oty ?,
wowy fwewy = tytstity
relations(Tg) = { wiwy 'wy twy ! = tat]?,
wgwgwgwfl = tltgtltgl,
w2w5w2w1_1 = t1t4t1t2_1,
wiwg fwawg = toty Msty
wswy twswy = tytatats
wiwy' =ty
w5w2w5wf1 = t4t1t4t51,
wiwg fwy twg b = oty ity
witwg o ? =ty ity
wi twewy? = 153,
w%w4w1 = t%tf,tg,
w%wgwl = t%tgtg,
wi = t3tyts

Explicit isomorphisms between the two amalgams of 'y and I'g as a subgroup of I' are given as
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follows:

F('qu)

P :

*Pégﬂ)%ﬁggﬂ)

1
T2 =q1
T3 = 44
T4
s = (g5
q2
q3
-1
17443
-1
714y
-1 -1
q1 4o T1T3T2
-1
gz T4
-1
go "T1T3
-1 -1
14 43
-1 _—1
r17r4qs3 (g5
-1
g T1
-1, -1
43 T4Ty

Ie

V
Iy

boby

baby

b1b3

b1bo

b?

alaglbgbfl =:b2b3a§1a;
alaglbgzzblbgaglafl

agafl
agafl
ai
a10a2
aias
azagby byt = blaza;’
asay 'by? = biby tagay
a1a3bg1b;1 ZZb%a1a3
alagbe =:b1bg1a1a2

1
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Ie

h,t) (h,w
l?(’ * o (h,t howy Fr
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wity
waty *
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A.3 TIllustration of Theorem 1(7)

Example 1 and k = ¢ = 4. Let Cy ¢ be given by

and Cy 4 (a disjoint copy of Cj¢) be given by

—1;—-1 -1 -1 —1;—1 -1 -1
{a4b4a5 b5 ,a4b4 ag ()57 a4b5a5 b4 ,a4b5 Qg b4}

—1p-1 1 -1 1,1 -1 -1
{agbsa "b; ", agbg "a; by, agbra; "bg ", agb; “a; bs}.

In the notation of the proof of [16, Proposition 6.1] we have n = 0, (V)X = (4, Ag)-complex X of

We choose Qg := a1, Ob:= by, @1 := a4, @2 := a5, by := ba, by := bs, a1 := ag, G2 := ar, by := bg,

52 = b7.

The surgery described in the proof of [16, Proposition 6.1] leads to the irreducible

(A4, A14)-complex given by the following R(7,7) (the relators of the embedded Example 1 are

underlined):

—1;—-1
a1b1a1 bl s

—1;—-1
a1b2a1 b3 s

—1
a1bsagb;

albglaglbg,
azbsay b51,
agbsaglbgl,
asbsay b61,

131
asbrag b7,

—1;—1
agb7a7 bﬁ 5

albzlaglbzl,
a2b6a2_1b6_1,
a367aglb;1,
a4b7azlb1_1,
asbiag b51,

agb;la;lbg,

albglaglbg,

171
arbsaz; by,

—1;—1
agbla3 bQ 5

—1;—-1
a1b5a1 b5 s

—1;—1
a252a3 bg 5

—1;—-1
a1b6a5 b6 y

—1
a253a3 bl,

a2b7a2_1b7_1,
a4blaglb;1,
a4bg1ag1b4,
aGanG by 1,

agbﬁ_la;lb7,

pu(b1)
po(b2) =
v (b3)
po(bs) =
(b5)
(b6)
(b7)

B

Pu b5
Pu bG
pv(b7

Prla1

Pnla2

X

(a1) = (2,
(az) = (1,
n(as) = (1,
prlas) = (1,7
(as) = (
(as) = (

(a7) = (

prlar

a2b3_1a3b2,

1 —1;-1
azby ag b1,

,5)(6,7)(8,

(2,
1,
2,
(1

= (4,5)(10,11),
(1
(6,7)(8,9),

4, )
1,5)(6
6,7)(8

—1;—-1
a4bga4 bQ 5
-1 -1
asby “ag " bs,

—1;—-1
aGbgaG b3 s

—1;—1
a7bla7 bl 5

3)(12,13),
13,12,2,3),
3,13,12,14),

—1;—-1
a4bga4 bg 5
—1;—1
a5b1a5 bl s
—1;—-1
a6b4a6 b4 s

—1;—1
a7bga7 bQ 5

7)(4,5)(8,14)(10,11),

3)(12,13),
1,14,3,2)(12,13),
1,12,13,14)(2, 3),
(8,14)(10,11),

10,11),

AA,_\/.\
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,5)
1
,7)(8,9)(10, 14),
,9)-

9)(10,14),

a3b4a3_1b21,
a4b4aglbg1,
a5b2ag1b2_1,
a6b5a6 by 1,

—1;—1
a7bga7 bg s

a1b7af1b;1,
agb4a51b21,
a3b5a3_1bg1,
a4b5ag1bgl,
a5b3ag1b3_1,
aGbGa;lb;l,

a7b5a7_1b5_1




A.4 Proof of Proposition 16

We first recall Proposition 16:

Proposition 16. For each k € Ny and I' as in Ezample 1 we have ((a?(H%)»p =Ty.
In the proof we need two lemmas:

Lemma 76. b§1b2a§(1+2k)b51b3 = a2_6(1+2k) for each k € Np.

Proof. We only use the given relators in I'. For k = 0:

bglbga?bglbzg

= by tagbzaiby b3

= by 'agaibaatby b3

= b3_1a3a1a3b3a?b2_1b3

= b§1a3a1a3a1b2a%b2_lbg
= b§1a3a1a3a1a3bgalbglb3
= b§1a3a1a3a1a3a1b2b§1b3
= a51b51a1a3a1a3a1b3

= a;laglbglagalagalbg

—2 131
= a4 Gy by "aiazaibs

= ay’ay b3 'azaibs
_ -4 —1;-1
= a, a5 by aibs

_ =5 —1;-1
= a;°ay by b3
_ 6
= a, .

Therefore by 1b2a1 1+2k)b Lpy = 76(1+2k).

Lemma 77. azbsbaby 'a’ T bgb5 5 ayt = aSU T boby, k € No.

Proof. The proof is by induction on k.
k=0:

Gngbng albgb 153 1@51
—1

= agbzboayby tajbsby tby tas

= agbsbraiay 'by tatbsby by tayt

= a2b362a1a2 a1b2 albgb 153 a21

= a2b362a1a2 1a1a2 b a1b3b lb 1 71

= agbsbraiay 1a1a2 a1by (11b3172 1b3 agy St

= agbsbraray 1a1a2 1a1a2 by b3b 1b 1 _1

-1 1 1,-1
= agbzasbzay ‘aray tara; thy Ty tas,

= a2b3a3a3b2a1a2 1a1a2 b 531 o1

= a2b3a3a3b3a2 a6y 1b 1b3 1a§1

= a2b3a3a3b2a1a2 b b 1 _1
= a2b3a3a363a2 bQ lb_l _1

= a2b3a3a3b2b bS 1
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induction step k — k + 1:

= a2a2b2a§b§1a;1

= a3azbrasbs tay’

= adagby tadbytay!
= ayasbzaiby a2_1
= agagbgagbglagl
= aSagbibz tayt
= agblaglbl

= a%a;lbgbl

= angbl.

a2b3b2b§1a§(1+2(k+1))b3b71b§1a271

asbsbaby tal2a’ M pabs by tay

6(1+2k); 1 —1,—1 —
asbsbaarby attaS T2 bbbz ag
a2b3b2a1a§1b§1
a2b3b2a1a2_1a1b a1,
1 -1
asbsbaaiay “ara, by aja;
bsb > )2%a1b5
azbsbz(aray ") a1by "ajay
alb ay

a

( )

( )
agbgbg(a1a51)3a1a2_1b_1a a

(a1ay ")

( Yiajay tby

( )

aiby ‘aja;

10 6(1+2k)b b lb a —1

1.9 6(1+2k)b b_lb_la_l
3 Uy

1.7 6(1+2k)b3b_1b§1a2_1

5 (15(1+2k)b3b51b§1a51

4 6(1+2k)b b_lb_l

3

4 1by 1 3 6(1+2k)b by lb ay

2 by 103 ay !

1.8 6(1+2k —13—-1 -1
b3b2 bS Ay

6(142k); ;—1,—1 —
aray M)?ara; by taba) -+ b3b21b31a21

-1

a2

—1\5 —1;—1_6(1+2k —1;—-1_—1
aszbsba(aray ) aray by al( )b3b2 bs “a,

—1/, —1\5p—1 6(14+2k); ;—1;-1 —1
agbsasbzay (ar1ay ) by al( )b3b2 bs "as

a2b3a3a3b2 (alagl)

2 -1 —1\4;—
aszbzazasbsas (aray “)*by

3 —1\4;—1 _6(1+2k —1;—-1 -1
asbsazasba(aray ~) by al( )b3b2 b3 “as

—1 _6(1+42k); ;-1;-1 —
5b31a1(+ )b3b21b31a21

1a2 6(1+2k)b b 1b a; -1

1 _6(142k) —1p—-1_—1
a, bsby “bs "as

4 -1 —1\37—1 6(1+2k); ;—1;-1 —1
aszbzazasbsay  (aray " )°bs ay bsby “b3 "a,

a2b3aga3b2 (alagl)

3;—1, 6(14+2k “1,-1 —
3b31a1(+ )b3b21b31a21

6 -1 —1\27—1 6(1+2k); ;171 _—1
azbsasasbsay ~(aray " )“bs ay bsby "3 “ag

7 —1\2;—1_6(1+2k —13—1 -1
azbzasagba(aias *)7by a( )b3b2 bs “a,

5 b LS TR bgb_lb_la_

asbsalaszbsay tayas
6(1+2k

a2b3a3a3b2a1a2 1b31 (+ )b by 1b agy

a2b3aéoa3b3a2_

6(142k) —1;—-1 —
asbsablasboby 'al T bab b tay !
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= agasboalboby 'aS T bsby Tb; tag !

= a2asb1ai’byb; 'a 1“*2’% by tby tag !

= aBasby "adbaby aS T bgby s eyt

= afasbsa§baby tag T bsby bs eyt

= a3asbyalbybsla 1(1“’% by 'by tay !

= aSasbyalbyby ' aS T bsby s a

= abasby tababy aS T bgby s eyt

= aSasbsalbyby a8 T bgbs s eyt

= aJashradbaby 'al M bsby bs eyt

= alasbyadboby taS T bbby tag !

= abazby Lasbsby tai by b‘lb_la_l

= ab2asbsbobs a “*2’%31) Lhrtay!

= a%Qag(H%)bgbl (by the induction hypothesis)
_ a3<”2<’€“>>b251.
O
Proof of Proposition 16. Since a? € I'g, one inclusion is obvious:
(a3 )r < To.
For the other inclusion we have by Lemma 76
—6(1+2k 6(1+2k
ay (28 ¢ <<a1( M,
and by Lemma 77
a3 oy € (e,
hence together
b2b1 c « (1+2k)>>I‘- (20)

Next, we observe that b? € ((bab1 )1 since

-1 -1 2 —2
(a1ay “babiazay “)(ajbabiay ™)
= alaglbgblagalbgblal_Q
= a1a2_1b2b1a2a1b2a1_2b1
= alaglbgblagalaflbgaflbl
= alaglbgblagaflbobl
= alaglbgagbglaglbgbl
= a1a2_1b2a3a1_1b2_1b2b1
= a1a§1b2a3a;1b1
= alaglagblaflbl
= alblal_lbl
= alal_lblbl
_ 12
= b2
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Moreover, ajaz ' € (b2)r < (b2bi)r, since

(ara3 'by *azay ) (a7 ay bTazar)
= ajay 'by 2azay 2ay ' bazay

= alaglbl_Qagal_Qaglb1a3b§1a1
= ayay by 2azay 2ay thraza byt
= ajay 'by 2azayag tagb tarby !
= ajay 'by 2azay 2arby thyt

= ajay 'by tagbiay thy byt

= ajay 'by tagay tbiby thy !

= ajay 'agbza; by "

= ajaz 'boby "

= ajaz L
It is easy to check that Iy is generated (as a subgroup of ') by {ajaz',b?}. We conclude that

(20)
o = (a1a35,0%) < (babi)r < (at" T )r,

as required.
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A.5 Amalgam decomposition of Example 3

We give a finite presentation of the horizontal decomposition I'g = Fy *p,, F5 in Example 3:

relations(T'y) =

generators(ro) - {31) 52,53, 54, S5, U1, U2, U37’U,47’U;5}7

sf15352153
53—15253?15481—1

S3 15%5%54 %53
5351535, 253

S3 1542153 8183
5352835, 283
551525351253
53?15452545%52253
51_1525352153
53_1542153_252153_152153
sflsgls45352253
5515?1551545;13;1

-1.3
54 5354 %53

2 1.2
s3ts3sgtsy 53

—-1.3

85 8384 83
83 185 18%84283

—1 —1 2.2
S3 85485 54535, S3

-1.2_-2_-1_-1_-1
S3 S4S3 S, S5 S4 S3
83841511

-1_,-1 -1
S1 84 8384 S3

-1.2 -2 -1 _-1
8378383 "84 8,4
551545153

—1.-1_2_-2
5354 835, 53

—1.2.—1 2
838483 51545354 53
2.-2
S3 5453 Sg sy
535571535;253
sglsisg25253
—1.2.—1. —1.-1
S3 78453 S4S5 81
53?1542152
—1 -1 —1
S1 Sy 5354 S3
53
—1.2 -1 3,2
S3 8483 4518354 783
—1.2.-2.—1_ -1
S3 78483 S, 8184 S3
—1.2 -1
838451835, S3
53?1515352253
s§15i5§1525§
525§5Z253
—-1.2 —1.2
513 5453 55 5?
2

838483 545251

—1.2.,-1
83 8485

—1.2.-2.—1_ —1
83 848375, S25; 83
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-1
Uy UIULUZ,

-1
Uz " U1U3UIU3UY,

—1 —
Uz ULUIU,

1, -1, -1

—1 -1 _
Uy U] U2U] Uz U] U3,

—1 -1 -1

Uz UTUSUITUL UT UUS,
-1, -1 -1 -1 -1 -1

Uy U Ug U Uz U US,
1
usz,

1
usz,

-1, -1 -1, -1 —
Ug U] U2UAU] Uz U]

-1, -1 -1, —1,—
Uz Ug ULULU] Uz Ug

-1
Uy  U2U4U3,

~1 -1, -2, 1 -1
Uz UIUSULU, U] “Uy U] U3,

-2 -1, -1, —1
Uy UIULU] U U] U3,

—1 —1
u3 U1U3U1U3u4 s

—1 -1 -1 -1
Uy USUIULU Uz Uy U3,
u§1u1U3u1u5_IU4u1U3,

-1, -1 -1
U2U3UIU4Uy Uz Up  UZ,

-1, -1, —1 -1, -1, -1

Uz Uy Ug UgUy  Us U U3,

—1 -1, -1, —1
Uz U2UITU4U Uz Uy U3,

1

-1 -1, -2 -1 —
Uz UIUIUIU, U Uy Uy U3,

2121 1
Uy Uy Uz,

-1, —1
’U,4 u3 uqug,

~1 -1, -2, —1
Uz UIUULU, U]~ Us U4,

-1, —1
Uz Uz UgUIU3,

-1, -1, —1 -1, -1, -1
Ug Uy Uz U4U] Uz Uy UZ,
u§1u1U3u1u§1u1U4u1—1 ot
-1 -1, -1, —1

Ug UTUIULU, U Uy U3,

1, -1 -1 -1 -1

- -1
Uy Uy Uy U] Uz U U3,

-1 -1, -1, -1
Uz UIUIUIUY, Uy Uy U3,
-1 -1

Uz " UIUIUIUIUE

-1 -1
Uz UIUIU5 U4,
-1, —1

Uy Uy U4U3,
-1, —1

Uy Up UqUIU3,

-1 2 -1, -1, —
Uz UITUZUIUSZUIULU Uz Uy
1

-1 -1, -2, —
Uz UIUIUIUY, Uy Uy U3,

u§1u1U3U4U3,
u§1UIIU4uf1u§1uf1U3,
u§1u1U3u%u4u1u3,
u1u3u1u4uf1ugluf1u3,
uy g uzu usugugug,

uy 'ugugus usug,

uy 'y uguguy,

—1 -1, —2 —1
Uz UIUIUIU, Uy U2Uy U3

1 -1, -1, —
U3UIU4Uy Uz Uq

Us U

usz,

us,

usz,




A.6 Table: |pi (w)

in Example 3 for |w| =2, k<5

Note that . . . .
1o (0b)| = | (Bb)] = | (00) 7| = [pF) (bb) Y|

if b,be {by,...,bs,b5 %, ... b7t}

PP | k=1] 2| 3 4 5
w = b? 50 5] 50| 300 1500
b1bs 3115 75| 150 | 2250
b1bs 5] 10| 150 | 900 | 9000
b1by 3115] 30| 450 | 4500
b1bs 51(30 (300 | 900 | 5400
bibs* 5| 15 | 450 | 4500 | 4500
biby ! 5( 15| 150 | 900 | 1800
biby " 5025 | 50| 500 | 3000
biby ! 31 9| 54| 54| 1620
b3 50 5] 50| 300 1500
babs 5(25| 50| 500 | 3000
baby 5] 15[ 150 900 | 1800
babs 5130300 900 | 5400
babs ! 5| 15 | 450 | 4500 | 4500
boby ! 3115 ] 30| 450 | 4500
babs ! 5] 10| 150 | 900 | 9000
b3 1] 5] 25 50| 500
bsby 2 6| 90| 180 | 2700
bsbs 1]130] 30| 450 | 4500
babs ! 1]130] 30| 450 | 4500
bab, 2120| 60| 600 1800
b3 21 4| 20| 100 | 500
babs 2[10] 20| 600 | 6000
babs 2110 | 20| 600 | 6000
b2 1| 2| 10 20| 600
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B Supplement to Section 5

B.1 Amalgam decompositions of Example 50

We first give the vertical decomposition of I' of Example 50:

r~p® ) (Z512 % F{).

* () o (s
F1(7):F1(7

F?Eb) = <b1ab2ab3>a
Z;lg * F3(S) = <817 ...,812,813, 514, S15 | 5% =...= 8%2 = 1>.

The subgroup Fl(g) < Féb) of index 8 is given by

F = (b7 by, b7 b3, babibs ', b3baby, bib2by,
bibg thoby, by by thibob?, by thy tbs Th3, babl,
b2b2, baby 12, b3by 'b3b?, baby tbabab?,
baby 2bab?, b7 b3 thab?, biby thy !, bibabibst),

the index 2 subgroup F\3) < 7312 x F{*) by

(s)
Fy7’ = (s152, 5153, 513, 5451, S551, 5651,
5181481, 8151581, 8751, 5851, S951,

51051, S1151, S1251, S151351, S15, 814>-

The identification in I' is
FY» = O

bflbg «—— S1S82
bl_lbg «—— 8183
b2b1b§1 > S13
b%bgbl > 5481
blb%bl > 8581
blbglebl —— 8651
by tby thibeb?  ——  s1s1481
b;lbglbglb% > 81815851
b3b‘13 — S781
b3b? —— sgs1
bgbglb% — 5981
b3bl_1b%b% — 51051
bsby Tbsbob?  ——  s1181
baby 2bob?  —— 5198
biths thab?  ——  s181351
blbglbgl «<—— 815
blbgblbgl «—— S14
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Recall the presentation of ' given in Section 5.4.2: T' = (a1, as, as, a4, b1,be, b3 | R), where

a;bja; by, a;bza; by, a;bgza; b,
-1 -1 -1 -1 -1 -1
a163 a462 s a1b2 agbl s albl a3b3 s
—17-1
azbjazbs, azbgaz b, asbzay by -,
R:
-1 -1 -1 -1
a2b3 a2b3 y a2b2 Qg b3, a3b1a3b1,
-1 -1 -1 -1
a3b3a3b3, a3b2 a3b2 s agbl Qy bg,
agbzasb bsasb b;tagby?t
4D2a4 D2, agbzaysbg, agb; agby

The isomorphism to the amalgam described above is

Féb) * () o (o) (ZSU*FPSS)) = I'= <a17a27a37a4;b17b27b3 | R)
17 =17
S1 — a1b1
S92 — albg
S3 — a1b3
Sq > ale_Ibl_2
S5 — ale_Qbfl
56 — ayby tbaby?
S — albIngl
S8 — albf1b§2
S9 > albl_lbgbgl
510 — albl_le_lebgl
11 — arby by 1b3 thybg !
S12 — arby by by
513 > bgblbgl
S1 — brbsbiby !
S15 — b1b2_1b3_1
Slbl_l — al
b;284b1 — as
b5258bg — as
b;lblbglslobngl_l > aq
b1 — b1
b2 — b2

We decribe now the (vertical) amalgam decomposition

I'y = F5(T) *F§§>%F§§> F5(q>

(r)
F5 :<T17T27T3;T4;T5>;

F5(Q) = <q1) 42,43, 44, q5>7
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R -

R

-1 -1 -1
(7”3 s, Ty Ts5, T5T175, T'4T1T75, Ty T175, T'1T4T2T5, T1T37275, 17275,

2 -1 -1,-2,-1 -1 _-1_-1_-1 _—1_—1 -1 ,.—1

rars, 121375, 72Ty T5,T5 T Tg , Ty Ty T Tg ,T5 71 Ts5Tg , T1 T3T1Ts,
-1 —-1,.—1 -1

Ty Ter3riTs, 'y T4 T3T1T5, T2T4Ts5T2Ts, 27471757215, 2T4Ty " T'5T2Ts,
—-1,.—-2 —-1,.—-1_-1_-1 —-1,.—-1_-1_-1 -1
Ty T3 T1Ts, Ty Ty Ty T3 TiT5, Ty T3 Ty T3 T1T5, TaTaToTy

1

-1, .-1 -1,.—-1 -1 -1 —1 -1 -1 -1 -1 -1
Ty Ty T5Ty To , Ty T1 T3I5 T3T1T5,T1 T3 T4Tg , T Ty 5

1

—-1,,—1 —1,,-1 —1 —1 —-1,,—1 —1
T's "To T1T3T1T5, T's T1 T4Ts5, Ty T2T57T275, T3T9 , T's T T3Ty 7“57“27“5),

=g 1, ¢ ' s ot s et i e et @ et
—1 —1 -1 -1 -1 -1 -1 —1 —1 —1 —1
43 45494 , 45 43 ;45 42 43 , 45 4443 , 45924445 44, 959249345 44,
1 1 -1 -1 -1 -1 -1 -1_ -1 —1 -1 -1
459295 44, 44 92 45 9495 , 44 9o 43 4445 , 44 4o 4149445 ,
—1 —1 —1 —1 —1 —1 —1 —1 -1 -1 -1 -1
ds 93495 493494 , 45 4344 49344 , 95 43929344 ", 94 42 45491492 45
e teng et et ans et Gy 0 tes e ey s,
—1 —1 -1 -2 -1 -1 -1 -1 2 —1 —1
459297 429495 , 44 49 45 44, 44 42 44 43, 9495 , 95929543 ,
43019391 "5 95 F9590195, 959207 “43q5 L),
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Fy;)

r§1r5
r21r5
rsT1Ts
T4T1T5
r§1r1r5
T1T4T2Ts
r1Tr3raTs
rrers
T2 Tg
roT3Ts
rgrf1r5
rglrf2r§1

1 1 1

-1 -1 —1_ —
T's 7;1 To T3
—-1,.—1 -1
s Ty T5T3
rf1r3r1r5
-1
Ty T2T3TiTs
—1,.—1
Ty Ty T3T1Ts
Tar4T5T2Ts
TT4T1Ts5727Ts
7“27“47“517“57“27“5

-1,.—-2
Ty T3 TiTs

1 1

~1,-1
Ty Ty T1Ts
1

T T3
121

—1,-1,-1,.—1
Ty T3 T T3 T1Ts

7"27’47"27’{1
—-1,.—1 —-1,.—1
Ty T3 Ty To
—-1,.—1 -1
Ty Tq T3Ts5 T3T1T5
—-1,.—1 1
T T3
1

r4T3

—1.-1.-1
T Ts T

—-1,.—1
Ts Ty T1T3T1T5
rglrf1r4r5

-1
Ty T2T5T2T5
7"37’2_1

—-1,.—1 -1

Ts Ty T3Ty T5T2Ts

The isomorphism is

F(T) K () ()F(‘I)
5 Fs3 :Fsg 5

1
)
T3
T4
5
q1
qz
q3
g4
qs

= FY

— Q2

— Q1

- q4—1q5—1

- q;qulqgjl
— g lasqy !

- q3—1q1—1q4—1
- q3—1q2—1q4—1
— q3'asqr"

— glg!

— qglqglqgl
— g5 quqz

— Q5(J2Q4Q5_1Q4
— 4524395 'qa
— G500 Q@

—  q;'a5 a5 qagy !
— g5 a5 taagy
— ¢ e qqags?
— ¢ 'q305 a3yt
— ¢ 'eq et
—  ¢; 'q3q203q; "
— ¢ e et
— gl g e
— ¢l ang e
— ¢4

— g e tar s g
— (J5Q2Q1_1(J2Q4Q5_1
— ¢ ' G w
— g g e
— qgs"

— Q5Q2(J5qgl

—  G3q1gaq;

— ¢ 'ags

—  q5q207 'a3q5 "

&5 Iy<T
— boby
— baby
— b1b3
— b1b2
— b%
— by by
— by by
— alagbgbgl
—  ajay 'by?
—— ajaz byt

184



B.2 Amalgam decompositions of Example

(v,b)

Fé ngﬁ)

*Févi)gI§U§)
S4b3
b182b;1
by

ba

b3

S1

52

53

S4

S5

where

Je

52
(a1,...,b3 | R(2,3)) PN
a1 PRENEN
as PRENEN
bl -
bo PN
b3 —
b1b2
a1b3by
arby b
albgl
a1b1b%
aray 'by’ —
a2a1bf1 -
a;2a2 —
aflaglalbfl —

Fg(v,b) = (b1, ba, b3),
Fév,S) =(s1,...,55),

J

<G/1, a2>,

F4(h»“) = <’U,17 ce ,11/4>7

P =

FiPo S Fhw
ai

a2

u2_1a2a1

a3uy a3

azuy 'az

Ui

U2

us

Ug

(by b1, bob2, bsb?, bib, by bsby, by b3, by 2bsba, by ®ba, by 2boby),

(v,s) —1 —1 —1 —1 _1 9 »
Fg [P — <5352 y S48 7, 84 S9 , S1, S5S9 , 5255, Sg, 5253, S525159 >’

(ha) 2 —1 —1 —2 1 9 Ly , -
Y =Aatay, a1 a4y, azaiaza; 7, ayag, a1y ar, a1ay, aiay aiaz),

(h,u) 1 . . ,
Fro = (uquguy -, uguy —, uguy -, Uz, Uy, Ui, Uilz),

ngb)
by by
bob?
bsb?
b1b2

by 'bsby
by b3
by 2bsbs
by 3by
by 2baby

lyéh,a)
alay!
a;1a52
agalagafl

2a/2

ap
—2

a1ay " 01

aia’

a1051a1a2

(110717 DEDTLITTTT
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(v,s)
F91
ERED)

54551

—~1 —1
84 32
S1

—1
5589
5255
53
S283

—1
828182 )

lyéh,u)
U1U3u51
U4u2_1
uQufl
us

u?

ULU4
Uru2,



a1biazba, arboagby !,
. -1 1 -1
R(Q, 3) = a1b3a2 bl, a1b3 a1b2 5

albflaglbg, a253a2551

186



C Some lists

C.1 2-transitive (6,6)-groups

We study (6, 6)-groups such that P}, P, are 2-transitive and give a complete list of the arising
4-tuples (| Pyl |Psl, |P,(LQ)|, |P152)|). Without loss of generality, we may assume that |Py| < |P,| and
that |P,(LQ)| < |Pv(2)| if |Py| = |P,|. By Table 1, there are only four 2-transitive subgroups of Sg:
PSL3(5), PGL2(5), Ag and Sg of order 60, 120, 360 and 720 respectively. Given P, € {P}, P, },
the maximal possible value for |P.(2)| is [Py |(|P]/6). If this maximum is attained, the value of
|P.(2)| is marked in the list with “«” on the right side. Observe that in the case P, = Ag the value
of |P.(2)| is always maximal (this is not very surprising by [15, Proposition 3.3.1]).

1Pl | |P)] 1P P&

60 60 937500 937500

60 60 937500 60000000 =

60 | 120 7500 15000

60 | 120 937500 60000000

60 | 120 937500 120000000

60 | 120 937500 1920000000

60 | 120 30000000 1875000

60 | 120 30000000 60000000

60 | 120 30000000 1920000000

60 | 120 60000000 * 60000000

60 | 120 60000000 =* 120000000

60 | 120 60000000 * 7680000000 =

60 | 360 937500 16796160000000 *

60 | 360 30000000 16796160000000 *

60 | 360 60000000 * 16796160000000 *

60 | 720 7500 1074954240000000

60 | 720 937500 33592320000000

60 | 720 937500 1074954240000000

60 | 720 937500 2149908480000000 =

60 | 720 1875000 1074954240000000

60 | 720 30000000 33592320000000

60 | 720 30000000 1074954240000000

60 | 720 30000000 2149908480000000 =

60 | 720 60000000 =* 33592320000000

60 | 720 60000000 =* 67184640000000

60 | 720 60000000 * | 1074954240000000

60 | 720 60000000 * | 2149908480000000 =
120 | 120 15000 15000
120 | 120 1875000 60000000
120 | 120 60000000 60000000
120 | 120 60000000 1920000000
120 | 120 60000000 3840000000
120 | 120 1920000000 1920000000
120 | 120 1920000000 7680000000 %
120 | 120 3840000000 7680000000 %
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120 | 360 1875000 16796160000000 =
120 | 360 60000000 16796160000000 =
120 | 360 120000000 16796160000000 =
120 | 360 1920000000 16796160000000 =
120 | 360 3840000000 16796160000000 =
120 | 360 7680000000 16796160000000 =
120 | 720 1875000 33592320000000
120 | 720 1875000 1074954240000000
120 | 720 60000000 33592320000000
120 | 720 60000000 67184640000000
120 | 720 60000000 1074954240000000
120 | 720 60000000 2149908480000000 =
120 | 720 120000000 33592320000000
120 | 720 120000000 1074954240000000
120 | 720 120000000 2149908480000000 =
120 | 720 1920000000 33592320000000
120 | 720 1920000000 67184640000000
120 | 720 1920000000 1074954240000000
120 | 720 1920000000 2149908480000000 =
120 | 720 3840000000 33592320000000
120 | 720 3840000000 67184640000000
120 | 720 3840000000 1074954240000000
120 | 720 3840000000 2149908480000000 =
120 | 720 7680000000 33592320000000
120 | 720 7680000000 * | 1074954240000000
120 | 720 7680000000 * | 2149908480000000 =
360 | 360 16796160000000  * 16796160000000 =
360 | 720 16796160000000  * 33592320000000
360 | 720 16796160000000  * 67184640000000
360 | 720 16796160000000 * | 1074954240000000
360 | 720 16796160000000 * | 2149908480000000
720 | 720 33592320000000 3359232000000
720 | 720 33592320000000 67184640000000
720 | 720 33592320000000 1074954240000000
720 | 720 33592320000000 2149908480000000
720 | 720 67184640000000 1074954240000000
720 | 720 67184640000000 2149908480000000
720 | 720 | 1074954240000000 1074954240000000
720 | 720 | 1074954240000000 2149908480000000 =
720 | 720 | 2149908480000000 * | 2149908480000000  *
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C.2 (4,4)-groups

In the list below, we classify all (4,4)-groups by the permutation isomorphism types of P}, and P,
and by T'% (only assuming |P,| < |P,|). We use the following notation:
21: group of order 2, permutation isomorphic to ((1,2)) < Sy,

25: group of order 2, permutation isomorphic to {(1,2)(3,4)),

41: group of order 4, isomorphic to Z3, permutation isomorphic to {(1,2), (
49: group of order 4, isomorphic to Z3, permutation isomorphic to ((1,2)(3,
D,: dihedral group of order 8.

t(P,) denotes the transitivity of the group P, € {Py, P,} on {1,2,3,4}.
?N? means that I" is possibly irreducible.

Ex | P, | P, | t(Py) | t(P,) | reducible | ['®
1 1 0 0 Y zZ4
1| 2 0 0 Y 73 x 7o
1 | 2 0 0 Y VA
1| 2 0 0 Y 72 x 7.3
1 | Zy4 0 1 Y 7% X 7y
1| 4 0 0 Y 72 x 7.3
1 | 4 0 1 Y 7% X 7y
1 | Dy 0 1 Y 72 x 7o
21 | 21 0 0 Y 72 x 73
21 | 2 0 0 Y 72 x 7o
21 | 29 0 0 Y 7% X 7y
21 | 2 0 0 Y 7 x 73
2 | 29 0 0 Y 72 x 7o
29 | 29 0 0 Y T X Dy X oy
21 | Zy4 0 1 Y 7 x 72
25 | Zy4 0 1 Y Z X Zg
29 | Zy4 0 1 Y 7 x 72
21 | 4 0 0 Y Zx173
21 | 4o 0 1 Y Z X Lo X Ly
2 | 4 0 0 Y ZX7Zo X7y
2 | 4 0 0 Y 72
25 | 49 0 1 Y Zo X 7.2
21 | Dy 0 1 Y 7 x 73
21 | Dy 0 1 Y 7 X Lo X Ty
2, | Ay 0 2 Y Z X Loy
26 Zy Zy 1 1 Y Zy X Zsg
Zy | 44 1 0 Y Z X 7y
30 | 41 | 4 0 0 Y 73
41 | Dy 0 1 Y Z X Loy
4, | Dy 0 1 Y 73 x Ty
34 | Dy | Ay 1 2 IN? 73 x 73
35 | Sy | Sy 4 4 7N? 73 x 73
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C.3 (4,6)-groups

The groups P}, and P, in the next list are classified only up to isomorphism (not up to permutation
isomorphism) and up to their transitivity. 36 denotes a group of order 36 permutation isomor-
phic to ((1,2,3),(1,4,2,5)(3,6)) and 72 denotes a group of order 72 permutation isomorphic to
((1,2,3),(1,2),(1,4)(2,5)(3,6)). ??7Y?? means that we cannot exclude the existence of a reducible
example.

| Ex | b, | P, | t(Pp) | t(Py) | reducible
1 1 0 0 Y
1 Zo 0 0 Y
1 Zs 0 0 Y
1 Ly 0 0 Y
1 z3 0 0 Y
1 S3 0 0 Y
1 S5 0 1 Y
1 Ze 0 1 Y
1 Lo X Ly 0 0 Y
1 Dy 0 0 Y
1 Ay 0 1 Y
1 | ZaxS; | 0 1 Y
1 Sy 0 1 Y
1 Zio X Ay 0 1 Y
1 Zo X Sy 0 1 Y
Zo 1 0 0 Y
Zo Zo 0 0 Y
Zs Zs 0 0 Y
Zo Ly 0 0 Y
Zo 73 0 0 Y
Zs Ss 0 0 Y
Zs Ss 0 1 Y
Zs Zs 0 1 Y
Lo | Zo X 7y 0 0 Y
Zs Dy 0 0 Y
Ty | 72 0 0 Y
Zs Ay 0 0 Y
Zo Ay 0 1 Y
Zo | ZaxSs | 0 1 Y
Zo | Zs X Ss3 0 1 Y
Lo Sy 0 1 Y
Ty | Zg x Ay 0 0 Y
Ty | Zg x Ay 0 1 Y
Lo 36 0 1 Y
Zo | S3 x S3 0 0 Y
Zs Zo x Sy 0 1 Y
Zy | PSLy(5) | O 2 %
Zy | PGLy(5) | 0 3 Y
Zo Ag 0 4 Y
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Zs Se | 0 6 Y
Z4 1 1 0 Y
Z4 Zs 1 0 Y
Z4 Z4 1 0 Y
Zy z3 1 0 Y
Zy S5 1 0 Y
Zy | Tg X 7y 1 0 Y
Ly Dy 1 0 Y
Z4 Z3 1 0 Y
Zy | S3x Ss 1 0 Y
73 1 0 0 Y
73 1 1 0 Y
73 Zo 0 0 Y
73 Zs 1 0 Y
73 Zs 0 0 Y
z3 Z4 0 0 Y
73 Z4 1 0 Y
z3 z3 0 0 Y
/] /] 1 0 Y
z3 Sy 0 0 Y
25 Z3 S5 0 0 ?N?
73 Ss 0 1 Y
Z3 Zg 0 1 Y
73 | Zo X7y 0 0 Y
73 Dy 0 0 Y
73 Ay 0 1 Y
z3 Ay 1 0 Y
Z3 | Zax S3 0 1 Y
73 | Zy x S3 0 1 N?
Z3 Sy 0 1 Y
z3 Sy 0 1 7N?
23,28 | Z2 | Zax Ay 0 1 Y
29 Z3 | 7o x Ay 1 0 Y
Z3 36 0 1 ?N?
12 73 | S3x S3 0 0 ?N?
Z3 | Zoyx Sy 0 1 Y
Z3 | Za xSy 0 1 ?N?
73 | PSLy(5) 0 2 ?N?
Z3 | PGLy(5) 0 3 ?N?
z3 Se 0 6 N
Dy 1 1 0 Y
Dy Zs 1 0 Y
D, Zs3 1 0 Y
Dy Ly 1 0 Y
Dy 73 1 0 Y
Dy Sy 1 0 Y
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Dy S3 1 0 IN?
D, S5 1 1 Y
Dy Ze 1 1 Y
Dy | Zo X 7y 1 0 Y
D, Dy 1 0 Y
Dy | Zs x Zs 1 0 N7
D, Ay 1 0 Y
Dy Ay 1 0 IN?
D, Ay 1 1 Y
Dy Sy 1 1 Y
Dy Sy 1 1 IN?
Dy | Zo x Ay 1 0 Y
Dy | Zo x Ay 1 0 IN?
Dy | Zo x Ay 1 1 Y
Dy 36 1 1 TN?
Dy | S3xS; 1 0 IN?
Dy | Zo x Sy 1 1 IN?
Dy | PSLy(5) | 1 2 IN?
Dy | PGLy(5) | 1 3 N
Di | PGLy(5) | 1 3 7Y
22 Dy Ag 1 4 N
Dy Se 1 6 N
Ay L 2 0 Y
Ay 73 2 0 Y
Ay S3 2 0 IN?
Ay Dy 2 0 TN?
Ay | Zg x Ss 2 1 IN?
Ay Sy 2 1 IN?
Ay 36 2 1 IN?
Ay | S3x S5 2 0 IN?
Ay | Zog x Sy 2 1 IN?
Ay Se 2 6 N
Sy Zo 4 0 Y
Sy Ly 4 0 Y
Sy 73 4 0 Y
Sy S3 4 0 N
Sy S3 4 0 7°7Y7?7?
Sy | Zo X Uy 4 0 Y
Sy Dy 4 0 Y
Sy Dy 4 0 IN?
Sy | Zs x Zs 4 0 IN?
Sy Sy 4 0 IN?
Sy Sy 4 1 N
Sy Sy 4 1 7?7Y77?
Sy | S3xS3 4 0 N
Sy | S3 xS3 4 0 7°7Y77?
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Sq | Zg xSy 4 0 IN?
Sy Zo X Sy 4 1 N
Sq | Zg xSy 4 1 77777
Sy | PSLy(5) 4 2 N
Sy | PSLy(5) 4 2 77777
Sy 72 4 1 IN?
52 Ss | PGLy(5) 4 3 N
Sy | PGLy(5) 4 3 77777
Sy Ag 4 4 N
Sy Se 4 6 N
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C.4 Some abelianized (Ay,,, As,)-groups

We classify some (Aam, Aap)-groups I' by their abelianization I'* and by the size of P}Ez) and
P52> (we restrict to 2 < m < n; m+n <8). If P}52> is not maximal (this can only happen for
2m = 4), then we give the number 12 - 34/|P}52>|. The list is complete for (2m,2n) = (6,6) and

(2m, 2n) = (4,8). There are no (A4, As)- and (A4, Ag)-groups.

Ex | 2m | 2n P,(LQ) max. | P{¥ max. |Tab| | Tab
| 4] 8 Y Y 4| 73
4110 Y Y 4 | 72
4110 3 Y 4 | 73
4110 Y Y 8 | Zo x Zy
4110 3 Y 8 | Zy X Zy
4110 Y Y 12 | 72 x 73
4| 10 3 Y 12 | Z3 x Z3
4110 Y Y 16 | 72 x 7y
4110 Y Y 16 | Zo % Zg
4110 3 Y 16 | Zo x Zg
41 10 Y Y 24 | Zo x Zg x Zy
4| 10 Y Y 24 | 73 x 73
4110 Y Y 32 | Z2 x Zsg
4|12 Y Y 4| 73
4] 12 3 Y 4 | 72
4112 Y Y 8 | Zy X Zy
4] 12 3 Y 8 | Zo x Zy4
4|12 Y Y 8 | Z3
4] 12 3 Y 8 | Z3
4| 12 Y Y 12 | Z3 x Zs
4] 12 3 Y 12 | 73 x Zs
4112 Y Y 16 | Zo % Zg
4] 12 3 Y 16 | Zo % Zg
4112 Y Y 16 | Z3 x Zy
4| 12 Y Y 20 | 73 x Zs
4| 12 Y Y 24 | Zo X 73 X Ly
4| 12 Y Y 24 | 73 x 73
4112 Y Y 28 | 73 x Zr
4112 Y Y 32 | Zy x Zig
4] 12 3 Y 32 | Zo X Zig
4| 12 Y Y 32 | 73 x Zg
4| 12 Y Y 40 | Zo X Zy X Zs
4| 12 Y Y 40 | Z3 x Zs
4112 Y Y 48 | Zo x 7z x Zg
1 6| 6 Y Y 4 | 72
6| 6 Y Y 8 | Z3
6| 6 Y Y 8 | Zo x Zy4
6| 6 Y Y 16 | Zo % Zg
6| 6 Y Y 24 | Zy x Ly x Zy
6| 6 Y Y 28 | 73 x 7
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C.5 Embedding Example 13 into primitive (10, 10)-groups

We embed the non-residually finite (8,6)-complex of Example 13 into (10, 10)-complexes X such
that P, and P, are primitive permutation groups. Let w := agaflagall. In all examples I in the
subsequent list, the normal subgroup {w)r has finite index in I, in particular, by Lemma 29,

{(whr = n N.
NIT

If two rows are exactly the same, then the quotients I'/{{(w)r are non-isomorphic non-abelian
groups of the same finite order. The (A9, A1p)-groups are the same as in Table 8.

(A [A [T TT]IC: Q)]
| S | Ao | 2,2] | 4] 4]
| S | S10 | 2,2] | 4] 4]
| PTLy(9) | A1 | [2,2] | 4] 4]
PIL>(9) | Sw | 2,2] 1 1
PI'L2(9) | Swo | [2,4] 8 8
PIL>(9) | St | [2.2,2] 8 8
Aqo Ao | [2,2] 4 4
Aqg Ao | [2,4] 8 8
Aio A1 | [2,2,2] 8 8
Aqp Ao | [2,2,3] 12 12
Aqg Ay | [2,2,4] 16 16
Aio Ao | [2,8] 16 16
Ao Ao | [2,2,5] 20 20
A1 Ao | [2,3,4] 24 21
A1o A | [2,2,2,3] 24 24
Aqp Ao | [2,2,8] 32 32
Aqg Ay | [2,4,5] 40 40
Aqo S | [2,2] 4 4
Aqo S | [2,4] 8 8
Aio S0 | [2,2,2] 8 8
Aqp S0 | [2,2,2] 8 < 16
A1o S0 | [2,2,3] 12 12
Aio S | [2,8] 16 16
Aro S0 | [4,4] 16 16
Aqp S0 | [2,2,4] 16 16
A1 Sio | [2,2,5] 20 20
Aqp S0 | [2,3,4] 24 24
A1o S0 | [2,2,2,3] 24 24
Aqp S0 | [2,2,7] 28 28
Aqp S0 | [2,2,8] 32 32
AL Sio | 2, 16] 32 32
Aqp S0 | [2,4,5] 40 40
Aqo S0 | [2,2,2,5] 40 40
Aqp S0 | 2,3, 8] 48 48
S1o | Aw [[2,2] | 4] 4




S1o Ao | [2,4] 8 8
S10 A1 [2, 2, 2] 8 8
S1o Ao | [2,2,2] 8 < 16
S1o A | [2,2,2] 8 < 16
S1o Ao | [2,2,3] 12 12
S1o Ao | [2,2,4] 16 16
S10 A1 | [2,8] 16 16
S1o Ao | [4,4] 16 16
S1o Ao | [2,2,5] 20 20
S1o Ao | [2,3,4] 24 24
S10 Ao | [2,2,2,3] | 24 24
S1o Ao | [2,2,7] 28 28
S1o A | [2,2,8] 32 32
S1o Ao | [2,2,9] 36 36
S1o Ao | [2.2.3.3] | 36 36
S0 Ao | [2.4,5] 10 10
St Ao | [2.2,11] | 44 m
S1o Ao | [2.4,7] 56 56
S1o Ao | [2,32] 64 64
S1o0 S | [2,2] 4 4
S1o S | [2,4] 8 8
S1o S1o [2, 2, 2] 8 8
S1o S0 | [2,2,2] 8 < 16
S10 S10 [2,2,2] 8 < 16
S1o S | [2,2,3] 12 12
S1o S0 | [2,8] 16 16
S1o S0 | [2,2,4] 16 16
S1o S | [2,2,4] 16 < 32
S1o S | [2,2,4] 16 < 32
S1o S0 | [2,2,4] 16 < 32
S1o Sio | [4,4] 16 16
S1o S0 | [2,2,5] 20 20
S1o S0 | [2,3.4] 21 21
S10 S0 | [2,2,2,3] 24 24
510 510 [2,2,2,3] 24 < 48
S1o S0 | [2,2,7] 28 28
S1o So | [2,16] 32 32
S1o S0 | [2,2,8] 32 32
S1o S0 | [2,4,4] 32 32
S10 S1o | [4,8] 32 32
S1o S0 | [2,2,9] 36 36
S1o S | [2.2.3.3] | 36 36
S1o S0 | [2,4,5] 40 40
S1o S | [2,2.2,5] | 40 10
S1o Sio | [2,2,11] 14 Y}
St S0 | [2,3.8] 13 18
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S1o S0 | [2,2,3,4] 48 48
S1o S1o [2,2, 13] 52 52
S1o S0 | [2,4,7] 56 56
S1o S0 | [2,2,3,5] 60 60
S10 Sio | [2,32] 64 64
S1o S0 | [2,4,9] 72 72
S1o S0 | 2,2, 19] 76 76
S1o S0 | [2,5,8] 80 80
S1o St | 2,4, 11] 88 83
S1o S0 | [2,2,25] 100 100
S1o St | [2,2.5,5] | 100 100
S1o S0 | [2,4,13] 104 104
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D GAP programs

In this section, we want to describe some GAP-programs ([28]), which have led to the construction
of most groups in this paper.

D.1 Theory and ideas

Our strategy can be resumed as follows:

Step 1: Describe a (2m,2n)-complex X in a way which is manageable for a computer. We
have adopted an idea due to 7?7, who writes X as a pair of integer valued matrices (lists of lists)
A and B.

Step 2: Given small m, n, generate all pairs (A, B) corresponding to a (2m,2n)-complex.
Given large m, n, generate randomly many pairs (A, B) corresponding to a (2m, 2n)-complex.

Step 3: Starting from a constructed pair (A, B), provide additional programs which compute
the local groups P}Ek), Pék) (for k small) and a finite presentation of I'. Then apply the pow-
erful GAP-tools for finite permutation groups to look for examples with interesting local groups
and/or use GAP-commands like Abelianlnvariants() and LowlndexSubgroupsFpGroup() to get some
information on the normal subgroup structure of the infinite group I'.

For instance, we have immediately found in this way an irreducible (Ag, Ag)-group I' with
[[,T] =Ty and Ty perfect (see Example 1).

Coming back to Step 1, we will define for given m,n € N an injective map

Omon @ Xom.2n — Mat(2m,2n, {1,...,2m}) x Mat(2m,2n, {1,...,2n})
X = pmn(X) = (4,B)

where Xo, 25, denotes the set of (2m, 2n)-complexes and X € Xap, 2y is given by its mn geometric

squares and where Mat(2m, 2n, {1,...,2m}) denotes the set of (2m x 2n)-matrices with entries in
the set {1,...,2m}. Each geometric square aba’b’ of X can be represented by expressions of the
form

aba'', a'bab, a0 "td 707, oo la L

To define ¢, n, note that one (or two) of these expressions has one of the five types (I)-(V)
illustrated in Figure 18, for suitable i,k € {1,...,m} and j,I € {1,...,n}. It is easy to check

(D) (11) (I11) (IV) (V)
by Ab; Dbia Ab; by Ab; by A Ab; Dbia v b;
a;bjaib aibjakbl_l aibjalzlbl aibjalzlbl_l aibj_lakbl_l

Figure 18: Possible types of a geometric square

that each geometric square has a unique type. We now define ¢, , for each possible type of
geometric squares, using the following notation for the “inverses”: i := 2m+1—1i, k := 2m+1—F,
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ji=2n4+1—74,1:=2n+1-1.

Type (I) (a;bjarby) A = k, Bi; =1
Ap =1, Bp:=]
Ay =k, Bj:=]j
A,}j =1, B;;j =1
Type (II) (a;bjarb; ") Aij =k, B =1
Apr = i Byt =
Ay =k, By:=}

Type (III) (aibjalzlbl) Aij = k/’, Bij I:Z
Akj =1, Bkj =1

a=k By:=]

Ap =i, By =]

Type (IV) (a;bja; 'b; ") Aij =k, By =1
il = k, i =]

Ag =i, By:=]

Type (V) (aib; 'axb; ') A=k, Bj:=I

Thus, each geometric square of X defines exactly four entries in A and B which describe the
corresponding four edges in the link Lk(z). In case of type (I) and (V) two choices are possible,
since as geometric squares we have the equalities a;b;arb; = arbja;b; and aibj_lakbl_l = akbl_laibj_l
respectively, but the definition of ¢, is independent of this choice. This proves that ¢y, , is
well-defined.

We illustrate this definition in Table 31 in the case of Example 1 given by its nine geometric
squares (see also Figure 19)

—1,-1 —1,-1 -1
arbial by, aibaay by, aibsasgb;
o -1 -1 —1;-1 —1;-1
R(3,3) = a1b3 ag bg, agbla3 bQ , a252a3 bS ,
-1 -1 -1 —1;-1
azbzas by, azbs azba, azby “az by
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aq aq a9
> > <
by A Ab, b3 A Aby, by A A D3
a ay a
as as as
b bg by b bg A by
aq (45} a9
as as as
» 4 »
b1 Y Abs by VY Ybs b A \ A}
a9 a9 a9
Figure 19: Example 1
Hence
11 5 3 11 1 3 2 5 4 6
3 3 3 4 6 3 2 3 6 5 41
2 51 2 2 2 6 3 2 1 4 5
A= B =
5 6 2 5 5 5 |’ 4 3 2 5 6 1
4 4 41 3 4 6 1 2 5 4 3
6 2 6 6 4 6 1 3 2 5 4 6

or in a more compact form
Note that given (A, B) € im(¢m,n), we can uniquely reconstruct X = ¢!, (4, B) (reflecting
the injectivity of ¢pm n).

Remark. By construction of ¢y, ,, there are bijections between the following sets:
{(Aij, Bij) Yi=1,...2m, j=1,....2n = {1,...,2m} x {1,...,2n},

{1,...2m} = {A;;}i=1,.2m for any j € {1,...,2n},
{17 Ce 27’L} = {Bij}j=1,...,2n for any ¢ € {17 ey 2m}

The idea of Step 2 for small m, n is to start with (2m X 2n)-matrices A and B consisting of
O-entries and “fill” them recursively with one geometric square (four non-zero entries in A and
B) in each recursion step. This is done systematically, i.e. going through all potential geometric
squares S. Of course, S has to satisfy several conditions, e.g. we want all potential new positions in
A (and B) coming from S to be free (i.e. zeroes) and all potential new pairs of entries (Ao, Bag)
coming from S are required to be new. If the candidate .S does not satisfy these conditions, we try
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geometric square | representative | type | A-entries | B-entries
arbiay 'yt arbiay 'yt (IV) | Au=1 | Bii=1
Ag=1 Bis=6
A1 =6 | Be1 =1
Ags =6 | Bgg =6
arbaa; by arbsay Tby (IV) | Aiz=1 | Bi2=3
A5 =1 By =4
Agz =6 Bgs =2
Agy =6 | Bga=5
a1b3a2b51 a1b3a2b51 (IT) | A13=5 Bi3 =2
Aos =6 | Bas =4
Agp =2 | Be2 =3
Asa =1 | Bsa=5
a1bz Laz by asbsa; b, (IV) | As3 =1 | B3z =2
Aiu=3 | Biu=5
A =6 | Byp=3
Ags =4 | Bes =4
asbiaz by ! asbiagz tby ! (IV) | Ayy =3 | By =2
Ass =2 | Bsg =5
Aso =4 | Bsa =1
Ags =5 | Bys =6
asbaaz b3t azbaaz tby ! (IV) | Az2 =3 | B2 =3
A3zs =2 | Bss =4
As3 =4 | Bsz =2
Apy=5 | Buu=5
asbzaz by azbzaz "by (IT) | As3 =3 | Baz =6
A4 =2 | Byy=1
As¢ =4 | Bsg =3
Ay =5 | By =4
asbs tazbs azbaasby ! (I) | A2 =5 | Bsa=3
Asyy=4 | By =5
Az =2 | Bz =2
As5 =3 | Bsgs =4
agbflaglbfl agblaglbl (IIT) | A3 =2 B3 =6
Ayg =3 | By =1
Ag =5 | Byg=1
As1 =4 | Bs1 =6

Table 31: Definition of A and B for Example 1

the next one. The conditions guarantee that at the end a “full” (i.e. without zero entries) pair of
matrices (A4, B) indeed describes a (2m, 2n)-complex X, in particular having a complete bipartite
link Lk(x) as required.

D.2 The main program

Our GAP-program looks as follows: (comments in GAP start with the character #)
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w33(X) | 1~b1 2~by 3=bs 4%b§1 5%()2_1 6%b1_1
1~ a 1/1 1/3 5/2 3/5 1/4 1/6
2~ ay 3/2 3/3 3/6 4/5 6/4 3/1
3~ as 2/6 5/3 1/2 2/1 2/4 2/5
d~az' | 5/4 6/3 2/2 5/5 5/6 5/1
S5a~ay' | 4/6 4/1 4/2 1/5 3/4 4/3
~a;'| 6/1 2/3 6/2 6/5 4/4 6/6

all := function(xl, x2, yi1, y2)

# generates the list [[x1,y1],...,[x1,y2],...,[x2,y1],...,[x2,y2]]

local w, k, i, j;
w = [1;
k :=1;
for i in [x1..x2] do
for j in [yl..y2] do
wlk]l := [i,3];
k := k+1;
od;
od;
return w;
end;

test := function(M, N, q, r, s, t, cM, cN)
# checks candidate a_q*b_r*a_s”-1*%b_t"-1
if (s = cM+l-q and t = cN+1-r) or

M[s] [cN+1-r] <> 0 or M[cM-q+1][t] <> 0 or M[cM+1-s][cN+1-t] <> O or

# M[ql [r] <> 0 is tested in test2
ForAny(all(1,cM,1,cN),
v => (M[v[1]1] [v[2]],N[v[1]] [v[2]]]

in [[s,t], [q,cN+1-t], [cM+1-s,r], [cM+1-q,cN+1-r]1]))

then

return false;
else

return true;

fi;

end;

part := function(x, y, z)

# we assume y <= Zz

# generates list [[1,1],...,[1,z],...,[x-1,1],...,[x-1,2],[x,1],...
local w, k, i1, i2, j;

w:=1[1;

k :=1;

for il in [1..x-1] do
for i2 in [1..z] do
wlk] := [i1,i2];
k := k+1;
od;
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od;

for j in [1..y-1] do
wlk] := [x,j];
k := k+1;

od;

return w;

end;

test2 := function(4, x, y, z)
# returns true if (x,y) is the first "free" position in A
if Alx][y] = O and
ForAll(part(x,y,z), v => A[v[1]][v[2]] <> 0)
then
return true;
else
return false;
fi;
end;

full := function(A)
# returns true if matrix A contains no O
if ForAny(A, x -> 0 in x) then
return false;
else
return true;
fi;
end;

main := function(A, B)
# main program
local cA, cB, i, j, k, 1, AA, BB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A) [2];
for i in [1..cA/2] do
for j in [1..cB] do
if test2(A,i,j,cB) then # (i,j) is first free position in A
for k in [1..cA] do
for 1 in [1..cB] do
if test(A,B,i,j,k,1,cA,cB) then # tests if a_i*b_j*a k™-1%b_1"-1 is ok
AA := StructuralCopy(4);
BB := StructuralCopy(B);
AATi][3] := k;
BB[i] [j] := 1;

AATKk] [eB-j+1] := i;
BB[k][CB—j+1] = cB+1-1;
AA[cA+1-i][1] := cA+1-k;

BB[cA+1-i]1[1] := j;
AA[cA+1-k] [cB+1-1]
BB[cA+1-k] [cB+1-1]

cA+1-i;
cB+1-j;
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if full(AA) then # (AA,BB) now describes a (cA,cB)-complex
# now we can check for conditions on AA, BB, e.g. like
# if conditions(AA,BB) then Print(AA, " ", BB, "\n"); fi;
else
main(AA, BB); # recursive step

fi;
fi;
od;
od;
fi;
od;

od;

end;

# e.g. main(NullMat (4, 6), NullMat(4, 6)); generates all (4,6)-complexes
# e.g. main(C,D); where C, D describe any partial complex,
# i.e. some given geometric squares

This procedure can also be applied for large m and n, but the time required to finish (i.e. to
generate all (2m, 2n)-complexes) grows very rapidly with increasing m and n. One reason for this
is that the filling process needs mn recursion steps for each (2m, 2n)-complex but another reason
is that the number of different (2m, 2n)-complexes becomes very large soon. This is illustrated in
Table 32 (note that we do not claim that different examples are non-isomorphic groups).

m | n| mn # X
1|1 1 3
112 2 15
113 3 105
1|4 4 945
115 5 10395
2|2 4 541
213 6 35235
2 | 4 8 3690009
3|3 9 27712191

Table 32: Number of (2m, 2n)-complexes generated by our programs

Therefore, to get a better “distribution” of the examples, we have also written a program which
randomly generates (2m, 2n)-complexes.

D.3 A random program

# the functions full(), all(), test(), part(), test2() are as before

Ma := function(m, n)
# generates (m x n)-matrix A, A[i][j] = i
local i, j, w;
w := NullMat(m,n);
for i in [1..m] do
for j in [1..n] do
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wlil[3] := 1i;

od;
od;
return w;
end;
Mb := function(m, n)

# generates (m x n)-matrix A, A[il[j] = j
local i, j, w;
w := NullMat(m,n);
for i in [1..m] do
for j in [1..n] do

wlil [3] := j;
od;
od;
return w;
end;
out := []1;
rdm := function(A, B, p)

local cA, cB, i, j, k, 1, AA, BB, k1, pp, z;
z := 0;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A) [2];
for i in [1..cA/2] do
for j in [1..cB] do
if test2(A,i,j,cB) then
repeat kl := Random(p); # p:available edges in link
z = z+1;
# z counts number of attempts, here we set the maximal number to 30,
# but it can be chosen larger or smaller if needed
until test(A,B,i,j,k1[1],k1[2],cA,cB) or z = 30;

AA := StructuralCopy(A);

BB := StructuralCopy(B);

if z < 30 then # test ok
AA[iI[3] := k1[1];
BB[i][j] := k1[2];
AAT®R1[1]] [cB-j+1] := i;
BB[k1[1]] [cB-j+1] := cB+1-k1[2];
AA[cA+1-1]1[k1[2]] := cA+1-k1[1];
BB[cA+1-i] [k1[2]] := j;
AA[cA+1-k1[1]] [cB+1-k1[2]] := cA+1-i;
BBLcA+1-k1[1]] [cB+1-k1[2]] := cB+1-j;

pp := StructuralCopy(p);

RemoveSet (pp,k1l);

RemoveSet (pp, [i,cB+1-k1[2]]);

RemoveSet (pp, [cA+1-k1[1],31);
RemoveSet (pp, [cA+1-i,cB+1-j]); # removes used edges in link
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if full(AA) then
out := StructuralCopy([AA,BB,cA,cB]);

else
rdm(AA, BB, pp);
fi;
fi;
fi;
od;
od;
return out;
end;
slc := function(aa,bb)

local res;
repeat out := [Ma(aa,bb),Mb(aa,bb),aa,bb];

res := rdm(NullMat(aa, bb), NullMat(aa, bb), all(l,aa,1,bb));
until # conditions(res[1],res[2]); whatever we want to check
Print(res[1],"\n",res[2],"\n");
end;

# e.g. slc(6,6); generates now randomly a (6,6)-complex
# satisfying additional conditions

One nice feature of both programs is that we can start with any k given geometric squares
(0 < k < mn) and generate all (some) (2m, 2n)-complexes containing these k geometric squares.
This was very useful in Section 3, where we have embedded for instance non-residually finite
examples in virtually simple (2m, 2n)-complexes.

D.4 Computing the local groups

For Step 3 we have written programs which compute the local groups P}Ek), Pv(k) for k small enough.
Here are the programs for k¥ = 1 and k = 2 (the programs for k > 3 become more complicated
with increasing k, but we do not need any new ideas). Moreover, we give the program to compute
Ky, for m = 3.

PhPerm := function(j, cA, A)
# generates permutation in P_h induced by b_j, i.e. p,(b;)
local v, i;
v:=1[1;
for i in [1..cA] do
v[i] := cA+1-A[cA-i+1][j];
od;
return PermList(v);
end;

Ph := function(A)

# generates P_h as a permutation group
local p, j, cA, cB;

cA := DimensionsMat(A)[1];
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cB := DimensionsMat(A) [2];
p:=1[1;
for j in [1..cB/2] do

plj] := PhPerm(j,cA,A);

od;

return Group(p,());

end;

PvPerm := function(i, cA, cB, B)

# generates permutation in P_v induced by a_i, i.e. pp(a;)
local w, j;
wo= [ 13
for j in [1..cB] do
w[jl := BlcA-i+11[j];
od;
return PermList(w);
end;

Pv := function(B)
# generates P_v
local p, i, cA, cB;
cA := DimensionsMat(B) [1];
cB := DimensionsMat(B) [2];
p:=1L[1;
for i in [1..cA/2] do

pli] := PvPerm(i,cA,cB,B);
od;
return Group(p, ));

end;

indx := function(v, x)
# returns index of first appearance of x in vector v

local i;

i:=1;

while v[i] <> x do
i = i+1;

od;

return i;

end;

s2 := function(c)

# generates points in 2-sphere of c-regular tree
local v, k, i, j;
v:=1[1;
k :=1;
for i in [1..c] do
for j in [1..c] do
if i+j <> c+1 then # exclude reducible paths

vik] := [i,j];
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k := k+1;
fi;
od;
od;
return v;
end;

vPerm2i := function(i, cA, cB, A, B)
# generates i-th permutation in P2v
local w, j;
w o= [1;
for j in [1..cB*(cB-1)] do
wl[jl := indx(s2(cB), [BlcA+1-i][s2(cB)[j1[1]1],
B[A[cA+1-i] [s2(cB) [jI1[1]111[s2(cB) [j1[2111);
od;
return PermList(w);
end;

P2v := function(A, B)
# generates P2v
local i, p, cA, cB;
cA := DimensionsMat(A) [1];
cB := DimensionsMat(A) [2];
p:=1L[1;
for i in [1..cA/2] do
plil := vPerm2i(i, cA, cB, A, B);
od;
return Group(p, ));

end;

hPerm2j := function(j, cA, cB, A, B)
# generates j-th permutation in P2h
local w, i;
w:=1[1;
for i in [1..cAx(cA-1)] do
wli] := indx(s2(cA), [cA+1-A[cA+1-s2(cA)[i][1]1]1[3]1,
cA+1-A[cA+1-s2(cA) [1]1[2]] [B[cA+1-s2(cA) [1]1[11]1[5111);
od;
return PermList (w);
end;

P2h := function(A, B)
# generates P2h
local j, p, cA, cB;
cA := DimensionsMat(A) [1];
cB := DimensionsMat(A) [2];
p:=1L[1;
for j in [1..cB/2] do
plj]l := hPerm2j(j, cA, cB, A, B);
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od;
return Group(p,());
end;

Kh6 := function(A, B)
# generates Kh for m = 3
return Stabilizer(Stabilizer(Stabilizer(Stabilizer(Stabilizer(Stabilizer(P2h(A, B),
[1, 2, 3, 4, 5], OnTuples),
[6, 7, 8, 9, 10], OnSets),
[11, 12, 13, 14, 15], OnSets),
[16, 17, 18, 19, 20], OnSets),
[21, 22, 23, 24, 25], OnSets),
[26, 27, 28, 29, 30], OnSets);
end;

D.5 Computing a presentation of I
A finite presentation for I' is obtained as follows (illustrated for m = n = 3):

F := FreeGroup("al", "a2", "a3", "bi", "b2", "b3");

# free group generated by a-1, a2, a3, b_1, b2, b3
al :=
a2 :=
a3 :=
bl :=
b2 :=
b3 :=

e I e B e B |

NL6a := function(n)
# map {1,...,2m} — E
local v;
if n=1 then v := al;
elif n=2 then v := a2;
elif n=3 then v := a3;
elif n=4 then v := a3"-1;
elif n=5 then v := a27-1;
elif n=6 then v := al™-1;
fi;
return v;
end;

NL6b := function(n)
# map {1,...,2n} — E,
local v;
if n=1 then v := bil;
elif n=2 then v := b2;
elif n=3 then v := b3;
elif n=4 then v := b3"-1;
elif n=5 then v := b27-1;
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elif n=6 then v := bl1"-1;
fi;

return v;

end;

relation6 := function(A, B)
# generates mn relators of I
local i, j, rel, cA, cB;
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A) [2];
rel := [];
for i in [1..cA/2] do
for j in [1..cB] do
if not NL6a(i)*NL6b(j)*NL6a(cA+1-A[i] [j])*NL6b(cB+1-B[i][j]) in rel and
not NL6a(cA+1-A[i] [j]1)*NL6b(cB+1-B[i] [j])+*NL6a(i)*NL6b(j) in rel and
not NL6a(cA+1-A[i][j])"-1#NL6b(j) "-1*NL6a(i) "-1*NL6Eb(cB+1-B[i][j])"-1
in rel then
Add(rel,NL6a(i)*NL6b(j)*NL6a(cA+1-A[i] [j]1)*NL6b(cB+1-B[i]l[j1));
fi;
od;
od;
return rel;
end;

G :=F / relation6(A,B); # definition of T’

# e.g. AbelianInvariants(G); computes now rab

# LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 8);

# computes all subgroups of low index (here of index <38),
# only reasonable for small index

D.6 A normal form program

Useful for other investigations are programs which bring a word in I' in ab- and ba-normal form,
see Proposition 6 (again illustrated for m = n = 3):

# F, al, a2, a3, bl, b2, b3, NL6a(), NL6b() as in Appendix D.5

LN6a := function(w)
# map Fj — {1,...,2m}, inverse of NL6a
local n;
if w=al then n := 1;
elif w=a2 then n := 2;
elif w=a3 then n :
elif w=a3"-1 then n := 4;
elif w=a2"-1 then n := 5;
elif w=al"-1 then n :
fi;
return n;

]
w

1]
()]
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end;

LN6b := function(w)
# map E, — {1,...,2n}, inverse of NL6b
local n;
if w=bl then n := 1;
elif w=b2 then n := 2;
elif w=b3 then n :
elif w=b3"-1 then n := 4;
elif w=b2"-1 then n := 5;

1]
w

elif w=b1°-1 then n := 6;

fi;

return n;

end;

SetA6 := [al, a2, a3, a3"-1, a2"-1, al~-1];

SetB6 := [bl, b2, b3, b3"-1, b2"-1, b1~-1];

nfab := function(A,B,w)
# brings word w in ab-normal form
local i;
for i in [1..Length(w)-1] do
if Subword(w,i,i) in SetB6 and Subword(w,i+1,i+1) in SetA6 then
return nfab(A,B,SubstitutedWord(w,i,i+1,
(NL6b(B[LN6a(Subword(w,i+1,i+1) "-1)] [LN6b(Subword(w,i,i) " -1)]1)*
NL6a(A[LN6a(Subword(w,i+1,i+1)"-1)] [LN6b(Subword(w,i,i) "-1)]1))"-1));
fi;
od;
return w;
end;

nfba := function(A,B,w)
# brings word w in ba-normal form
local i;
for i in [1..Length(w)-1] do
if Subword(w,i,i) in SetA6 and Subword(w,i+1,i+1) in SetB6 then
return nfba(A,B,SubstitutedWord(w,i,i+1,
NL6b(B[LN6a(Subword(w,i,i))] [LN6b(Subword(w,i+1,i+1))])*
NL6a(A[LN6a(Subword(w,i,i))] [LN6b(Subword (w,i+1,i+1))]1)));
fi;
od;
return w;
end;

D.7 Computing Aut(X)

The following program generates all elements of Aut(X), where X is given by A and B (again
illustrated for m = n = 3).

212



# F, al, a2, a3, bl, b2, b3, NL6a(), NL6b() as in Appendix D.5

relation := function(A, B)
local i, j, k, rel, rel2, cA, cB;
cA := DimensionsMat(A)[1];

cB := DimensionsMat(4) [2];
rel := [];
rel2 := [];

for i in [1..cA] do
for j in [1..cB] do
rel[cB*(i-1)+j] := NL6a(i)*NL6b(j)*NL6a(cA+1-A[i] [j])*NL6b(cB+1-B[i] [j1);
od;
od;
for k in [1..cA*cB] do
rel2[k] := Subword(rell[k],2,4)*Subword(rellk],1,1);
od;
return Union(rel,rel2);;
end;

LN := function(w,k1,k2,k3,k4,k5,k6,c)
local n;
if w=al then n := ki;
elif w=a2 then n := k2;
elif w=a3 then n := k3;
elif w=bl then n := k4;
elif w=b2 then n := kb5;
elif w=b3 then n := k6;
elif w=b3"-1 then n := c-k6;
elif w=b2"-1 then n := c-k5;
elif w=b1°-1 then n := c-k4;
elif w=a3"-1 then n := c-k3;
elif w=a2”-1 then n := c-k2;
elif w=al"-1 then n := c-ki;
fi;
return n;
end;

NL := function(z)
local n;
if z=1 then n := al;
elif z=2 then n := a2;
elif z=3 then n := a3;
elif z=4 then n := bil;
elif z=5 then n := b2;
elif z=6 then n := b3;
elif z=7 then n := b3"-1;
elif z=8 then n := b2°-1;
elif z=9 then n := bl17-1;
elif z=10 then n := a37"-1;
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elif z=11 then n := a2"-1;
elif z=12 then n := al"-1;
fi;
return n;
end;

permute := function(A,B)
local i1, i2, i3, ji, j2, j3, k, PL, L, cA, cB, c;
PL := [1;
L := relation(A,B);
cA := DimensionsMat(A)[1];
cB := DimensionsMat(A) [2];
c := cA + cB;
for il in [1..c] do
for i2 in Difference([1..c], [il, c+1-il1l]) do
for i3 in Difference([1..c], [il, c+1-il, i2, c+1-i2])do
for j1 in Difference([l..c], [il, c+1-il, i2, c+1-i2, i3, c+1-i3])do
for j2 in Difference([1l..c], [il, c+1-il1, i2, c+1-i2, i3, c+1-i3, j1, c+1-j1])do
for j3 in Difference([1..c],
[i1, c+1-i1, i2, c+1-i2, i3, c+1-i3, j1, c+1-j1, j2, c+1-j2])do
for k in [1..Size(L)] do
PL[k] := NL(LN(Subword(L[k],1,1),i1,i2,i3,j1,j2,j3,c+1))
* NL(LN(Subword(L[k],2,2),i1,12,i3,31,j2,j3,c+1))
* NL(LN(Subword(L[k],3,3),i1,12,i3,31,j2,j3,c+1))
* NL(LN(Subword(L[k],4,4),i1,i2,i3,j1,j2,j3,c+1));

od;
if Set(PL) = Set(L) then
Print(NL(il)," ",NL(i2)," ",NL(i3)," ",
NL(j1)," ",NL(j2)," ",NL(j3)," ","\n");
fi;
od;
od;
od;
od;
od;
od;
end;

permute (A,B) ;

For X as in Example 1, i.e. for

115 3 11 1 3 2 5 46
3 3 3 46 3 2 3 6 5 41
A 2 51 2 2 2 . B- 6 3 2 1 4 5
5 6 2 5 5 5 4 3 2 5 6 1
4 4 41 3 4 6 1 2 5 4 3
6 2 6 6 4 6 1 3 2 5 46

we get
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permute(A,B);
al a2 a3 bl b2 b3
al”™-1 a2”-1 a3"-1 b1"-1 b3 b2

D.8 Quaternion lattice program

We illustrate the construction of I'y; of Section 5 for the example p = 3, [ = 5 (Example 52).

psi := function(v,x0,x1,x2,x3)
return[[x0 + vxx1*E(4), v*x2 + v*x3*E(4)], [-v*x2 + v*x3*E(4), x0 - v*x1*xE(4)]];
end;

(;
[1;

a :
b :

al1] := psi(1,1,0,1,1);

# v(1+j5+k)

al2] := psi(1,1,0,1,-1);
# (14— k)

al3] := psi(-1,1,0,1,-1);
# P(l—j+k)

al4] := psi(-1,1,0,1,1);
# p(1—j—k)

b[1] := psi(1,1,2,0,0);
b[2] := psi(1,1,0,2,0);
b[3] := psi(1,1,0,0,2);
b[4] := psi(-1,1,0,0,2);
b[5] := psi(-1,1,0,2,0);
b[6] := psi(-1,1,2,0,0);

gAB := function(p,1l)
local i, j, k, m, A, B;
A := NullMat(p+1,1+1);
B := NullMat(p+1,1+1);
for i in [1..p+1] do
for j in [1..1+1] do
for k in [1..1+1] do
for m in [1..p+1] do
if alil*b[j] = blkl*a[m] or al[il*b[j] = -blk]l*a[m] then
ATi] [3]
B[i] [j]
fi;
od;
od;
od;
od;
return([A,B]);
end;

m;
k;
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gAB(3,5) [1];

A

qAB(3,5) [2];

B :

gives

3 3 2 4 4 2

4 3 1 3 4
4 2 4 2 11
2113 2 3

1

|
|

5 1 6 2 3 4
3 5 6 2
1 3

36 21 4 5
1
2 4 5 6
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E Miscellanea

E.1 Topology of Aut(7;)

Throughout this section, let 7; be the ¢-regular tree and G = Aut(7;) its group of automorphisms.
We denote by X the countable vertex set of 7, endowed with the discrete topology. Let X =
{z1,z2,...} be a fixed enumeration of X. For subsets V,W C X and elements z,v,w € X, we
define Gy,w := {g € G : (V) C W}, the vertex stabilizer G, := G} {2}, the pointwise stabilizer
Gv = NgevG: and to simplify the notation we write G, w = Goywy Gow = Goy {wy- We
take the product topology on [] .y X = XX ={f:X — X} and let O be the relative topology
for G ¢ XX. Let m; : [I.cx X — X be the i-th projection. The product topology guarantees
that these maps are continuous. Again, by definition of the product topology, a subbase for O is
given by the sets G, w, where v € V C X and W C X. Since Gy, = Uyew Gy, w, the family
of sets Gy, where v,w € X, is another subbase for O. This topology O is sometimes called
topology of pointwise convergence (or topology of simple convergence), since a sequence (g, )nen in
G converges to g € G if and ounly if (g,(x)) converges to g(z) in X for all z € X. Since X carries
the discrete topology, this means that for each « € X, there is an integer m such that g, (z) = g(x)
for n > m. Note that O is the compact open topology, since this has as subbase the sets Gv,w,
where V' C X is finite, W C X, and since

GV,W = ﬂ U G'ui,'w;

i=1weW
where V = {vy,...,v,}.

Proposition 78. (G,0) is a locally compact, totally disconnected, second countable, metrizable
Hausdorff space. Moreover, it is a topological group, where we take the usual composition of
elements in the group G.

Proof. Hausdorff: X* is Hausdorff as a product of Hausdorff spaces (see [38, Theorem IIL5]),
hence also its subspace G is Hausdorff.

Countable base: This follows immediately since X is countable and {G, , : v,w € X} is a
subbase for O.

Metrizable: Let p be the discrete metric on X, i.e. p(v,w) := 0 if v = w and p(v,w) := 1 if
v # w. We define for g,h € G

d(g,h) == Zp(g(fvi), h(xi)).

Then d is a metric on G which induces O (see [17, Theorem 6.20]).

Locally compact: Let v,w € X. If we can show that G, is compact, then any g € G has a
compact neighbourhood. Let (g5 )nen be a sequence in G, ,,. By the local finiteness of 7y, the set
{gn(z;) : n € N} is finite for each ¢ € N. Therefore, there is an infinite subset N3 C N such that
the vertices g, (z1) coincide for all ny € Ny. Denote this common vertex by g(z1). Next, choose
an infinite subset Ny C Ny, such that g,,(z2) coincide for all ny € Ny and define g(x3) := gn, (22)
(ng € N3). Continuing this process (i = 3,4, ...) defines an element g € G, ,,. By construction, g
is a cluster point of (g )nen. This shows that G, ,, is countably compact. But in a metric space,
the notions of countably compactness and compactness are equivalent.

Note that G, is a profinite group (see [20, Proposition 1.3.5]). Recall that a topological group
is profinite if and only if it is compact and totally disconnected.

Moreover, note that X~ is not locally compact (this follows from [38, Theorem V.19]).
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Separable: A metric space is separable if and only if it has a countable base (see [17, Corollary
7.21]).

Totally disconnected: We show that XX is totally disconnected. Assume that K C XX
is a connected subset such that ki,ks € K. Since the projections m; are continuous, each image
m;(K) is connected in X, i.e. a point. Thus m; (k1) = m;(k2) for each i and therefore k1 = ko. G is
totally disconnected as a subspace of XX.

Topological group: Let U be the family of sets Gy, where V' runs over finite subsets of X.
Note that Gy = Nyev Gy, is open in G. We first show that By := {gU : g € G,U € U} is a
base for some topology O on G such that (G, ©) (with the usual composition in the group G) is
a topological group and then show that O = O.

The subbase By = {gU : g € G,U € U} generates a topology O on G, in particular, the family B,
of finite intersections of elements in B is a base for O. Obviously, we have By C Bs. If we can
prove By C By, then B is a base for O as claimed. Let

n
B2:mgiUi (giEG,UiEU)
i=1

be any element in By and let h € By. Then g;lh € U, for each ¢ = 1,...,n and therefore
gi_thi = U, for each ¢ =1,...,n, using that U; = Gy, for some finite V; C X. Thus,

n n
By = thz:h<ﬂUz> € By,
i=1 i=1
since N;_,U; € U. Recall that the map
p:GxG—G
(91.92) — 9192

is continuous if for each (g1, g2) € G x G and each open neighbourhood U of g1g2 in G there is an
open neighbourhood V of (g1, ¢2) in G x G such that ¢(V) c U.

So let (g1,92) € G x G and let U = Uh,U, (h, € G,U, € U) be an open neighbourhood of g1 g, in
G, say gig2 = hju; € h;U; C U with U; = Gv,. Then g5 'G,,(v,)92U; C Uj. Tt follows that

(91Ggs(vy)) (92U5) C 9192U; = hju;U; = hU; C U.

Since g1Gy,(v;) x g2U; is an open neighbourhood of (g1,92) in G x G, we conclude that ¢ is
continuous.

L is similar. We have to show that for each

The proof of the continuity of the map G — G, g +— g~
g € G and each open neighbourhood U of g~ ! there is an open neighbourhood V of g such that
V-1lcU:

Let g € G and let U = UR,U, (h, € G,U, € U) be an open neighbourhood of ¢g=!, say g=! =
hju; € hiU; C U with U; = Gy, and define V= Gy-1(v;) €U. Then gf/71g*1 C U; and

A\ 1 N
() o705 = hyuUs = hsU; < 0.

! is continuous and (G, (5) is a topological

Since gf/ is an open neighbourhood of g, the map g — g~
group.
We know that {G, . : v,w € X} is a subbase for O and {gU : g € G,U = Gy,V C X finite}
is a subbase for O. In fact, @ = O, because on one hand Gy = gG, for any g € G such that
g(v) = w, and on the other hand

9Gv = ) Gugw)-

veV
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Proposition 79. Let I' be a subgroup of G and define 'y := I' N G,. Then the following three
statements are equivalent:

i) T is discrete.
it) I'y is finite for all x € X.
iti) 'y is finite for some v € X.

Proof. 1) = ii): A discrete subgroup H of a Hausdorff topological group G is closed in G (see [32,
Theorem 5.10]). Applying this theorem, T is closed in G and I',, = T'N G, is closed in G, hence
compact (since G, is compact). But I, is also discrete (being a subgroup of I'), thus finite.

ii) = iii): This is obvious.

ili) = i): Write Ty, = {71,...,7}. For any v; € T';, \ {1} there is some (large) integer m; such
that v; ¢ T'NGg(z,m,)- Let m be the maximum of the m;’s, then 'NGg(y,m) = {1}. Since Gg(z,m)
is open in G, {1} is open in I', and T is discrete ({7} = {7y}{1} is open in I"). O

Remark. By Proposition 79, G is not discrete, in particular {g} is not open in G. However, {g}
is closed in G, since

{g} = G\ | Gar.x\(g(w0))-
1€EN
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E.2 Growth of (2m,2n)-groups

Let T" be a finitely generated group and S a finite set generating I'. Following [31], we define the
word length £s(y) of an element v € T'\ {1}:

ls(y):=min{i:y=s51...8; 81,...,8 € SUST'}  (L5(1):=0),
for k € Ny the growth function
ki B0, S5k) == #{y € T: s(y) < b,

the corresponding growth series
(oo}
B(T,S;z) =Y B(T,S;k)z
k=0
the spherical growth function

ki o(T, S:k) = B(T, S k) — BT, S;k — 1), (o(T, 550) := 1),
and the corresponding spherical growth series
[e.e]
S(T, S;2) == o(T,S;k)z" = (1-2)B(T, S; 2).
k=0
Proposition 80. Let I' = {(a1,...,am,b1,...,b, | R(m,n)) be a (2m,2n)-group and take the

standard generators S := {a1,...,am,b1,...,b,} of I

(1) The Cayley graph of (I, S) can be identified with the 1-skeleton of Tom X Ton, in particular
the growth functions of (T, S) only depend on m and n.

(2)

) _ 142 142
( (n—1 1+z)’1—(2m—1)z 1—(2n—1)z

(
(I, S;2) =
(1m = Gm

=1+ (2m+2n)z + (2m(2m +2n — 1) + 2n(2n — 1)) 22 + O(2*)

(3) If (m,n) # (1,1), then T is of exponential growth.
(4) If myn > 2, then T is quasi-isometric to Fy X Fs.

Proof. (1) See [8, 1.8A.2] for an explicit identification. Note that 72y, X T2, is the universal cover
of the “Cayley complex”, which is exactly our (2m,2n)-complex X.

(2) By (1), (I, S; 2) = Z(F, x F,,, S; z). Note that

142
1—2

(2 A{1};2) =

The claim follows now from the behaviour of the spherical growth series with respect to
taking free and direct products, (see [31, Proposition VI.A 4]). As an intermediate step, we

have for example
142

E(Fm,{ar,..am}i2) = T @m-1):
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(3) This follows from the obvious fact that F,, X F;, contains a non-abelian free subgroup (namely
Fox{1}ifm>2or {1} x F, if n > 2).

(4) F,, x F, is isomorphic to a finite index subgroup of F; x Fy (the index is (m — 1)(n — 1)),
hence the groups are quasi-isometric by (1). (Note that for ¢,¢' > 3, the tree 7; is quasi-
isometric to 7y, see [8, Exercise 1.8.20(2)]. This is a more general result than (4), since £, ¢/

are allowed to be odd.)
O

Example. Let T be a (6,6)-group. Then
Y(T,S;2) = 1+ 122 + 962% + 6602° + 4200z* + 255002° + O(2°)

and
B(T,S;2) = 1+ 132 + 10922 + 7692° + 49692* + 304692° 4+ O(z9).
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E.3 Deficiency of (2m,2n)-groups

Let G be a finitely presented group. The deficiency of a finite presentation P of G is the number
of generators minus the number of relations in P. The deficiency def(G) of G is the maximum
of the deficiency of P taken over all possible finite presentations of G. It is well-known (see [26,
Lemma 1.2]) that

def(G) < rankH:(G;Z) — d(H2(G;Z)), (21)

where d(H2(G;Z) denotes the minimal number of generators of the second homology group of G
with integer coefficients. The group G is called efficient if equality holds in (21).

Proposition 81. LetT' be a (2m,2n)-group. Then T is efficient and def(I') = m + n — mn.
Proof. Since I' has the finite presentation (a1, ..., am,b1,...,b, | R(m,n)), we have
def(T") > m 4+ n — mn.
On the other hand
def(T") < rank(H,(T;Z)) — d(H2(T;Z))
= rank(H; (T';Z)) — rank(H2(T"; Z))
=1—x(I)

=m-+n—mn.

The inequality is (21) and the equalities above are described in [39, Section 6], where x(I') is
the Euler characteristic of the complex X (or the alternating sums of the ranks of the homology
groups of I', which is the same here). O

Remark. The deficiency for a (2m, 2n)-group I is attained by its standard presentation
(a1, ...,am,b1,..., by | R(m,n))

as well as by the natural presentations of their amalgams (if they exist, see Proposition 2)

Fo %Py _smyomn Fl=mtmn and Fo %m0 o0 F1ongmn.

Remark. There are non-efficient torsion-free groups, see [45].
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E.4 Certain regular graphs associated to a (2m, 2n)-group

Following an idea of Mozes ([51]), we associate to a (2m,2n)-group I' two infinite families of
finite regular graphs (X (T'))ken and (Y (T'))ren. The vertex set of Xy (T') is E,(Lk) and the vertex
set of Y (T') is Egk). Two vertices a,a € Ef(bk) are connected by a geometric edge if and only if
pu(b)(a) = a for some b € E,. In this case, b and b~! are oriented edges such that o(b) = a,
t(b) = a, b = b~'. Similarly, two vertices b,b € Ef,k) are connected by a geometric edge if and
only if p,(a)(b) = b for some a € Ej,. We list some obvious properties of X (I") (the properties of
Y% (T') are analogous):

e X(T') has 2m(2m — 1)k~ vertices.

o X;(T) is 2n-regular.

e X;(T') is connected if and only if P,Ek) is transitive on E,(Lk).

e X (T) is connected for each k if and only if pry(T') is locally co-transitive.

o If X;(T") is not connected, then X;(I") is not connected for each I > k.

e If X;(T") has no loops, then X;(I") has no loops for each [ > k.
Less obvious is

Proposition 82. (Mozes [51]) IfT' =T, as in Section 5.2, then (Xi(I'))kren and (Yi(T'))ren are
Ramanujan graphs, i.e. for every k € N and every eigenvalue \ of the adjacency matriz of Xi(T),
either X\ = (1 + 1) or |\ < 21, and for every eigenvalue X of the adjacency matriz of Y3 (T),
either A = £(p+ 1) or [\ < 2,/p.

Question 19. Are there other (2m,2n)-groups T' such that (X (T'))ken are Ramanugjan graphs?

See Figure 20 and 21 for a visualization of Y7 (I's 5) and X2(I's 5), where I's 5 is the (4, 6)-group
of Section 5.4.3.

Figure 20: Y1(T's5)
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Figure 21: Geometric realization of X5(I's 5)

E.5 History of simple groups and free amalgams

We give some selected history of finitely presented (generated) infinite simple groups and amalgams
of finitely generated free groups. (In this section the term free group always means a non-abelian
free group)

e Aleksandr G. Kuros 1944 ([40]) He asked for the existence of a finitely generated infinite
simple group. (This was positively answered in [33])

e Graham Higman 1951 ([33]) He gave the first existence proof of a finitely generated
infinite simple group and asked for the existence of a finitely presented infinite simple group:
“Can an infinite simple group have not only a finite set of generators, but also a finite set of
defining relations?” (This was positively answered by Richard J. Thompson in 1965)

e Ruth Camm 1953 ([18]) She constructed uncountably many finitely generated infinite
simple groups of the form Fj *p_ F5. These groups are torsion-free, 2-generated, but not
finitely presentable (by [3]).

e Richard J. Thompson 1965 (in unpublished notes) He defined two finitely presented
infinite simple groups C (often called T') and V (often called V'). They are not torsion-free.
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He defined also a third interesting group P (often called F') which is torsion-free but not
simple. For an introduction to these three groups, see [19].

Peter M. Neumann 1973 ([56]) “At one time I had hoped that one might construct a
finitely presented simple group as a generalised free product of two free groups A, B of
finite rank amalgamating finitely generated subgroups H and K. Joan Landman-Dyer and
I showed quite easily that if H has infinite index in A or K has infinite index in B then such
a group G is not simple.” For a proof that G is even SQ-universal under these conditions,
see [63, Corollary 2]. For an alternative proof that G (again provided [A : H] or [B : K] is
infinite) is not simple, see [36, Corollary 2]. Then Neumann posed the following problems
(which appeared also in the Kourovka notebook): “Let G = Axpy—, B where A, B are non-
abelian free groups of finite rank and |A : H|, |B : K| are finite. (a) Can it happen that G is
simple? (b) Is G always SQ-universal?” ((a) was positively answered in [14]; consequently
the answer to (b) is no)

Graham Higman 1974 ([34]) He generalized Thompson’s group V' to an infinite family of
finitely presented infinite simple groups.

Dragomir Z. Djokovié¢ 1981 ([25]) His finitely presented infinite “simple” group with
bounded torsion turned out to be not simple.

Elisabeth A. Scott 1984 ([64]) She constructed another family of finitely presented infinite
simple groups, related to the Higman groups.

Kenneth S. Brown 1985 ([10]) He generalized the Thompson groups T', V and established
some finiteness properties.

Kenneth S. Brown 1989 ([11]) He showed that Thompson’s group V' can be written as a
(“positively curved, realizable”) triangle of groups with finite vertex groups Ss, Ss, S7.

Meenaxi Bhattacharjee 1994 ([6]) She gave a construction of an amalgam F3 *p, F3
without non-trivial finite quotient. This group is “nearly simple” in her terminology, but it
is not known whether it has proper infinite quotients, or it is simple. More examples like
this appear in [6] and [7].

Geoffrey Mess (in [57, Problem 5.11 (C)] 1995) “Let X be a finite aspherical complex.
Is there an example of an X with simple fundamental group?” (His question was positively
answered in [14])

Daniel T. Wise 1996 ([69]) He constructed a square complex without a non-trivial finite
covering and asked: “Does there exist a CSC with (non-trivial) simple 717 I guess that one
does exist.” (where CSC stands for complete square complex, any (2m, 2n)-complex is CSC)
(Again, this was positively answered in [14])

Marc Burger, Shahar Mozes 1997 ([14]) They constructed an infinite family of finitely
presented torsion-free simple groups which are amalgams of finitely generated free groups
and thereby solved many open problems mentioned above (Neumann, Mess, Wise).

Claas E. Rover 1999 ([62]) He gave a construction of finitely presented infinite simple
groups that contain Grigorchuk groups.
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