
ABELIANIZATION CONJECTURES FOR SOME ARITHMETIC
SQUARE COMPLEX GROUPS

DIEGO RATTAGGI

Abstract. We extend a conjecture of Kimberley-Robertson on the abelian-

izations of certain square complex groups.

1. Introduction

Throughout this paper, let p, l be any pair of distinct odd prime numbers,

rp,l := gcd
(
p− 1

4
,
l − 1

4
, 6

)
∈ {1, 2, 3, 6} ,

and q ∈ {p, l}. We first recall the definition of the group Γp,l from [2, 3, 4, 5]. Let
Qq be the field of q-adic numbers. We fix elements cp, dp ∈ Qp and cl, dl ∈ Ql such
that

c2p + d2
p + 1 = 0 ∈ Qp and c2l + d2

l + 1 = 0 ∈ Ql.

Note that we can take dq = 0, if q ≡ 1 (mod 4).
Let H(Q)∗ be the multiplicative group of invertible rational Hamilton quater-

nions, i.e. the set

{x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ Q} \ {0}

equipped with the multiplication induced by the rules i2 = j2 = k2 = −1 and
ij = k = −ji. If x = x0 + x1i + x2j + x3k, we define as usual the conjugate
x := x0 − x1i− x2j − x3k, and the norm |x|2 := xx = x2

0 + x2
1 + x2

2 + x2
3.

Let ψq be the homomorphism of groups H(Q)∗ → PGL2(Qq) defined by

ψq(x0 + x1i+ x2j + x3k) :=
[(

x0 + x1cq + x3dq −x1dq + x2 + x3cq
−x1dq − x2 + x3cq x0 − x1cq − x3dq

)]
and let the homomorphism

ψp,l : H(Q)∗ → PGL2(Qp)× PGL2(Ql)

be given by ψp,l(x) := (ψp(x), ψl(x)). Observe that it satisfies ψp,l(−x) = ψp,l(x)
and ψp,l(x)−1 = ψp,l(x).

Let H(Z) be the set of integer Hamilton quaternions and Xq the subset of quater-
nions

Xq := {x =x0 + x1i+ x2j + x3k ∈ H(Z) ; |x|2 = q ;

x0 odd, if q ≡ 1 (mod 4) ; x1 even, if q ≡ 3 (mod 4)}

Date: August 8, 2005.

Supported by the Swiss National Science Foundation, No. PP002–68627.

1



2 DIEGO RATTAGGI

of cardinality 2(q + 1).
Finally, let Qp,l be the subgroup of H(Q)∗ generated by (Xp∪Xl) ⊂ H(Z) and let

Γp,l < PGL2(Qp)×PGL2(Ql) be its image ψp,l(Qp,l), which is a finitely presented,
torsion-free linear group.

The starting point for this work was the following conjecture of Kimberley and
Robertson for the abelianization Γab

p,l := Γp,l/[Γp,l,Γp,l] of the group Γp,l in the case
p, l ≡ 1 (mod 4). We use the notation Zn := Z/nZ and Zm

n := Z/nZ× . . .× Z/nZ
(m times).

Conjecture 1. (Kimberley-Robertson [1, Section 6]) If p, l ≡ 1 (mod 4), then

Γab
p,l
∼=


Z2 × Z3

4 , if rp,l = 1

Z3
2 × Z2

8 , if rp,l = 2

Z2 × Z3 × Z3
4 , if rp,l = 3

Z3
2 × Z3 × Z2

8 , if rp,l = 6 .

In Section 2, we will give an equivalent formulation of this conjecture and a new
conjecture relating the abelianization of Γp,l to the number tp,l of certain pairs of
commuting quaternions, defined as

tp,l := |{(x, y) ∈ Yp × Yl : xy = yx}| ,

where Yq is any subset of Xq of cardinality (q + 1)/2 such that x ∈ Yq implies
x0 > 0 and x /∈ Yq. Note that the definition of tp,l does not depend on the choice of
elements in Yp and Yl, and that ψp,l(Yp∪Yl) is a generating set of Γp,l of cardinality
(p+ 1)/2 + (l + 1)/2.

The case p, l ≡ 3 (mod 4) is treated in Section 3 and the remaining (mixed) case
in Section 4. The final section is devoted to conjectures on the abelianizations of
some subgroups of Γp,l.

The Conjectures 2, 3, 4, 5, 7, 9, 10, 11 and 12 have been stated in the authors
Ph.D. thesis ([2, Chapter 3]). We have checked Conjectures 2, 4, 5, 7, 9, 10, 11
and 12 for more than 100 different pairs (p, l) which are explicitly listed in [2,
Table 3.13].

2. The case p, l ≡ 1 (mod 4)

In this section, we restrict to the “classical” case p, l ≡ 1 (mod 4). The following
conjecture is equivalent to Conjecture 1.

Conjecture 2. Let p, l ≡ 1 (mod 4).
If p, l ≡ 1 (mod 8), then

Γab
p,l
∼=

{
Z3

2 × Z3 × Z2
8 , if p, l ≡ 1 (mod 3)

Z3
2 × Z2

8 , else .

If p ≡ 5 (mod 8) or l ≡ 5 (mod 8), then

Γab
p,l
∼=

{
Z2 × Z3 × Z3

4 , if p, l ≡ 1 (mod 3)

Z2 × Z3
4 , else .
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Proof of the equivalence of Conjecture 1 and Conjecture 2. If rp,l = 6, then (p −
1)/4 = 6s and (l − 1)/4 = 6t for some s, t ∈ N, i.e. p = 24s+ 1 and l = 24t+ 1. It
follows p, l ≡ 1 (mod 8) and p, l ≡ 1 (mod 3).

If rp,l = 3, then (p − 1)/4 = 3s and (l − 1)/4 = 3t, where s or t is odd (oth-
erwise rp,l would be 6). Consequently, we have p = 12s + 1 and l = 12t + 1, in
particular p, l ≡ 1 (mod 3). If s is odd, then p ≡ 5 (mod 8). If t is odd, then l ≡ 5
(mod 8).

If rp,l = 2, then (p− 1)/4 = 2s and (l− 1)/4 = 2t, i.e. p = 8s+ 1 and l = 8t+ 1,
hence p, l ≡ 1 (mod 8). Moreover, s 6≡ 0 (mod 3) or t 6≡ 0 (mod 3) (otherwise rp,l

would be 6). In the first case, we have p 6≡ 1 (mod 3), in the second case l 6≡ 1
(mod 3).

If rp,l = 1, then (p− 1)/4 = 2s− 1 or (l− 1)/4 = 2t− 1 (otherwise rp,l would be
even), hence p = 8s−3 or l = 8t−3, i.e. p ≡ 5 (mod 8) or l ≡ 5 (mod 8). Moreover:
(p− 1)/4 = 3s+ 1 or (p− 1)/4 = 3s+ 2 or (l− 1)/4 = 3t+ 1 or (l− 1)/4 = 3s+ 2
for some s, t ∈ N0 (otherwise rp,l would be a multiple of 3), hence p = 12s + 5 or
p = 12s + 9 or l = 12t + 5 or l = 12t + 9, in particular p 6≡ 1 (mod 3) or l 6≡ 1
(mod 3). �

The equivalence of the two conjectures above is also expressed in Table 1.

rp,l l ≡ 1 5 9 13 17 21 (mod 24)
p ≡ 1 6 1 2 3 2 1

5 1 1 1 1 1 1
9 2 1 2 1 2 1

13 3 1 1 3 1 1
17 2 1 2 1 2 1
21 1 1 1 1 1 1

Table 1. rp,l for p, l taken modulo 24

The structure of Γab
p,l also seems to depend only on the number tp,l defined in

Section 1. Observe that

3 ≤ tp,l ≤ min
{
p+ 1

2
,
l + 1

2

}
,

if p, l ≡ 1 (mod 4).

Conjecture 3. Let p, l ≡ 1 (mod 4). Then

tp,l ≡


3 (mod 12) , if rp,l = 1

9 (mod 12) , if rp,l = 2

7 (mod 12) , if rp,l = 3

1 (mod 12) , if rp,l = 6 .
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We have checked Conjecture 3 for all pairs of distinct prime numbers p, l < 1000
such that p, l ≡ 1 (mod 4). The following values for tp,l appear in this range:

tp,l ∈


{3, 15, 27, 39, 51, 63, 75, 87, 99} , if rp,l = 1

{9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 153} , if rp,l = 2

{7, 19, 31, 43, 55, 67, 79, 91, 103, 115, 127, 151} , if rp,l = 3

{37, 49, 61, 73, 85, 97, 109, 121, 133} , if rp,l = 6 .

See Table 2 for the frequencies of the values of tp,l, where p, l ≡ 1 (mod 4) are
prime numbers such that p < l < 1000.

tp,l 3 15 27 39 51 63 75
# 1242 449 143 56 34 17 7

87 99
5 2 1955

tp,l 9 21 33 45 57 69 81
# 178 158 84 57 40 21 8

93 105 117 129 141 153
9 12 5 2 1 575

tp,l 7 19 31 43 55 67 79
# 236 130 79 42 18 8 12

91 103 115 127 139 151
6 1 4 2 1 539

tp,l 1 13 25 37 49 61 73
# 26 15 15 16

85 97 109 121 133
7 4 3 2 3 91

3160

Table 2. tp,l and its frequency, p < l < 1000

Combining Conjecture 3 with Conjecture 1, we get another conjecture:

Conjecture 4. Let p, l ≡ 1 (mod 4). Then

Γab
p,l
∼=


Z2 × Z3

4 , if tp,l ≡ 3 (mod 12)

Z3
2 × Z2

8 , if tp,l ≡ 9 (mod 12)

Z2 × Z3 × Z3
4 , if tp,l ≡ 7 (mod 12)

Z3
2 × Z3 × Z2

8 , if tp,l ≡ 1 (mod 12) .

3. The case p, l ≡ 3 (mod 4)

If p, l ≡ 3 (mod 4), we have a conjecture similar to Conjecture 2.
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Conjecture 5. Let p, l ≡ 3 (mod 4).
If p (mod 8) = l (mod 8), then

Γab
p,l
∼=

{
Z2 × Z3 × Z2

8 , if p, l ≡ 1 (mod 3) (=: case (B1))

Z2 × Z2
8 , else (=: case (B2)) .

If p (mod 8) 6= l (mod 8), then

Γab
p,l
∼=

{
Z2 × Z3 × Z2

4 , if p, l ≡ 1 (mod 3) (=: case (B3))

Z2 × Z2
4 , else (=: case (B4)) .

The four cases (B1)–(B4) defined in the conjecture above can also be expressed
taking p and l modulo 24, see Table 3.

l ≡ 3 7 11 15 19 23 (mod 24)
p ≡ 3 (B2) (B4) (B2) (B4) (B2) (B4)

7 (B4) (B1) (B4) (B2) (B3) (B2)
11 (B2) (B4) (B2) (B4) (B2) (B4)
15 (B4) (B2) (B4) (B2) (B4) (B2)
19 (B2) (B3) (B2) (B4) (B1) (B4)
23 (B4) (B2) (B4) (B2) (B4) (B2)

Table 3. Cases (B1)–(B4) for p, l taken modulo 24

The connection to tp,l is not as nice as in Section 2. We get the following values
for tp,l, if p, l ≡ 3 (mod 4) are distinct prime numbers less than 1000.

tp,l ∈


({4, 6, . . . , 104} ∪ {110, 114, 122, 124, 132}) \ {84, 88} , in case (B1)

{0, 2, . . . , 78} ∪ {84, 100, 110} , in case (B2)

{0} , in case (B3)

{0} , in case (B4) .

In general, i.e. without the restriction p, l < 1000, it is easy to see that tp,l is always
even. Moreover, it follows from [4, Section 5] that tp,l = 0 in the cases (B3), (B4),
and tp,l > 0 in case (B1). The computations of tp,l combined with Conjecture 5
lead to the following conjecture:

Conjecture 6. Let p, l ≡ 3 (mod 4).

(1) If tp,l = 0, then Γab
p,l
∼= Z2 × Z2

8 or Γab
p,l
∼= Z2 × Z3 × Z2

4 or Γab
p,l
∼= Z2 × Z2

4.
(2) If tp,l = 2, then Γab

p,l
∼= Z2 × Z2

8.
(3) If tp,l ≥ 4, then Γab

p,l
∼= Z2 × Z3 × Z2

8 or Γab
p,l
∼= Z2 × Z2

8.
(4) If Γab

p,l
∼= Z2 × Z3 × Z2

4 or Γab
p,l
∼= Z2 × Z2

4, then tp,l = 0.
(5) If Γab

p,l
∼= Z2 × Z3 × Z2

8, then tp,l ≥ 4.
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4. The case p ≡ 3 (mod 4), l ≡ 1 (mod 4)

The remaining case is p (mod 4) 6= l (mod 4). Since Γp,l
∼= Γl,p, we can restrict

to p ≡ 3 (mod 4), l ≡ 1 (mod 4).

Conjecture 7. Let p ≡ 3 (mod 4), l ≡ 1 (mod 4).
If l ≡ 1 (mod 8), then

Γab
p,l
∼=

{
Z2 × Z3 × Z2

8 , if p, l ≡ 1 (mod 3) (=: case (C1))

Z2 × Z2
8 , else (=: case (C2)) .

If l ≡ 5 (mod 8), then

Γab
p,l
∼=

{
Z2 × Z3 × Z2

4 , if p, l ≡ 1 (mod 3) (=: case (C3))

Z2 × Z2
4 , else (=: case (C4)) .

Observe that the four conjectured possibilities for Γab
p,l are exactly the same as

in Conjecture 5.
See Table 4 for the cases (C1)–(C4) expressed by p and l taken modulo 24.

l ≡ 1 5 9 13 17 21 (mod 24)
p ≡ 3 (C2) (C4) (C2) (C4) (C2) (C4)

7 (C1) (C4) (C2) (C3) (C2) (C4)
11 (C2) (C4) (C2) (C4) (C2) (C4)
15 (C2) (C4) (C2) (C4) (C2) (C4)
19 (C1) (C4) (C2) (C3) (C2) (C4)
23 (C2) (C4) (C2) (C4) (C2) (C4)

Table 4. Cases (C1)–(C4) for p, l taken modulo 24

The behaviour of tp,l seems to be very similar as in Section 3. We get the
following values for tp,l, if p ≡ 3 (mod 4), l ≡ 1 (mod 4) are prime numbers less
than 1000.

tp,l ∈


({4, 6, . . . , 48} ∪ {58}) \ {40} , in case (C1)

{0, 2, . . . , 54} ∪ {60} , in case (C2)

{0} , in case (C3)

{0} , in case (C4) .

Conjecture 8. Conjecture 6 also holds if p ≡ 3 (mod 4), l ≡ 1 (mod 4).

5. More conjectures

In this section, we give conjectures for the abelianization of the commutator
subgroup [Γp,l,Γp,l] of Γp,l and for a certain subgroup Λp,l of Γp,l of index 4 defined
below.
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Conjecture 9. Let p, l ≡ 1 (mod 4).
If p, l ≡ 1 (mod 8), then

[Γp,l,Γp,l]ab ∼=

{
Z2

2 × Z2
16 × Z64 , if p, l ≡ 1 (mod 3)

Z3 × Z2
16 × Z64 , else .

If p ≡ 5 (mod 8) or l ≡ 5 (mod 8), then

[Γp,l,Γp,l]ab ∼=

{
Z2

2 × Z3
16 , if p, l ≡ 1 (mod 3)

Z3 × Z3
16 , else .

Conjecture 10. Let p, l ≡ 3 (mod 4).
If p (mod 8) = l (mod 8), then

[Γp,l,Γp,l]ab ∼=


Z2

2 × Z2
8 × Z64 , if p, l ≡ 1 (mod 3)

Z2
8 × Z64 , if p = 3 or l = 3

Z3 × Z2
8 × Z64 , else .

If p (mod 8) 6= l (mod 8), then

[Γp,l,Γp,l]ab ∼=


Z2

2 × Z2
8 × Z16 , if p, l ≡ 1 (mod 3)

Z2
8 × Z16 if p = 3 or l = 3

Z3 × Z2
8 × Z16 , else .

The groups appearing in Conjecture 11 are again the same as in Conjecture 10:

Conjecture 11. Let p ≡ 3 (mod 4) and l ≡ 1 (mod 4).
If l ≡ 1 (mod 8), then

[Γp,l,Γp,l]ab ∼=


Z2

2 × Z2
8 × Z64 , if p, l ≡ 1 (mod 3)

Z2
8 × Z64 , if p = 3

Z3 × Z2
8 × Z64 , else .

If l ≡ 5 (mod 8), then

[Γp,l,Γp,l]ab ∼=


Z2

2 × Z2
8 × Z16 , if p, l ≡ 1 (mod 3)

Z2
8 × Z16 , if p = 3

Z3 × Z2
8 × Z16 , else .

Let Λp,l be the following subgroup of Γp,l.

Λp,l := ψp,l({x = x0 + x1i+ x2j + x3k ∈ H(Z); x0 odd; |x|2 = pslt, s, t ∈ 2N0}) .

Observe that Λp,l is the kernel of the surjective homomorphism Γp,l → Z2 × Z2

determined by

ψp,l(x) 7→

{
(1 + 2Z, 0 + 2Z) , if |x|2 = p

(0 + 2Z, 1 + 2Z) , if |x|2 = l ,

in particular Λp,l is a normal subgroup of Γp,l of index 4. It seems that the abelian-
ization of Λp,l does not depend on p and l, if p, l > 3.
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Conjecture 12. Let p, l be any pair of distinct odd prime numbers. Then

Λab
p,l
∼=

{
Z2 × Z2

8 , if p = 3 or l = 3

Z2 × Z3 × Z2
8 , else .

Since the conjectured abelianizations of the groups Γp,l, [Γp,l,Γp,l] and Λp,l are
never 2-generated, we also get the following conjecture:

Conjecture 13. Let p, l be any pair of distinct odd prime numbers. Then the
groups Γp,l, [Γp,l,Γp,l] and Λp,l are not 2-generated.
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