ABELTANIZATION CONJECTURES FOR SOME ARITHMETIC
SQUARE COMPLEX GROUPS

DIEGO RATTAGGI

ABSTRACT. We extend a conjecture of Kimberley-Robertson on the abelian-
izations of certain square complex groups.

1. INTRODUCTION

Throughout this paper, let p, [ be any pair of distinct odd prime numbers,
rps = ged (p;l, l;1,6) € {1,2,3,6},
and g € {p,l}. We first recall the definition of the group I',; from [2, 3, 4, 5]. Let
Qg be the field of g-adic numbers. We fix elements c,, d, € Q, and ¢;,d; € Q; such
that
+di+1=0€Q, and ¢f +di +1=0€ Q.

Note that we can take d, =0, if ¢ =1 (mod 4).

Let H(Q)* be the multiplicative group of invertible rational Hamilton quater-
nions, i.e. the set

{.130 + x1i + x2j + .133]@ 1T, T1,T2, T3 € Q} \ {0}
equipped with the multiplication induced by the rules i = j2 = k> = —1 and
ij =k =—ji. f © = xg+ x19+ x2j + z3k, we define as usual the conjugate
T :=xg — 14 — 22j — w3k, and the norm |z|? := 27T = 23 + 2% + 23 + 23.
Let 14 be the homomorphism of groups H(Q)* — PGL2(Q,) defined by

2o+ xicqg +x3dg  —x1dg + T2 + x30q>}

‘ k) e
V(o + 210 + 225 + 23k) [(—xldq Cmatase, o — wrcq — wad,

and let the homomorphism

wp,l : H(Q)* - PGLQ(Q])) X PGLQ(QZ)

be given by 1, (x) = (Yp(x),1(x)). Observe that it satisfies 9, ;(—x) = ¥, (2)
and ¥y, ()7 = 1 (T).

Let H(Z) be the set of integer Hamilton quaternions and X, the subset of quater-
nions

X, ={r =m0+ 210 + 225 + 23k € H(Z); |2|* =q;
zo odd, if g =1 (mod 4); z; even, if ¢ =3 (mod 4)}
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of cardinality 2(q + 1).

Finally, let Qp; be the subgroup of H(Q)* generated by (X,UX;) C H(Z) and let
Iy < PGL2(Qp) X PGL2(Qy) be its image 1y, 1(Qp.1), which is a finitely presented,
torsion-free linear group.

The starting point for this work was the following conjecture of Kimberley and
Robertson for the abelianization T4 := T, ;/[Tp1, Tp,] of the group I'; in the case
p, Il =1 (mod 4). We use the notation Z,, := Z/nZ and Z7" := Z/nZ % ... x Z/nZ
(m times).

Conjecture 1. (Kimberley-Robertson [1, Section 6]) If p,i =1 (mod 4), then

Zy x I3, if Tpy =1
Fab ~ Zg X Z% R lf Tpl = 2
PUT Y 2y x Zs x 23, if rpy =3

L3 x L3 x L3, if rp; =6.
In Section 2, we will give an equivalent formulation of this conjecture and a new

conjecture relating the abelianization of I',; to the number ¢, ; of certain pairs of
commuting quaternions, defined as

tpr = H(w,y) € Yp x Vi + wy = ya}],

where Y, is any subset of X, of cardinality (¢ + 1)/2 such that « € Y, implies
xo > 0and T ¢ Y,. Note that the definition of ¢, ; does not depend on the choice of
elements in Y, and Y}, and that v, ;(Y,UY]) is a generating set of 'y, ; of cardinality

p+1)/2+(1+1)/2.

The case p,I =3 (mod 4) is treated in Section 3 and the remaining (mixed) case
in Section 4. The final section is devoted to conjectures on the abelianizations of
some subgroups of Iy, ;.

The Conjectures 2, 3, 4, 5, 7, 9, 10, 11 and 12 have been stated in the authors
Ph.D. thesis ([2, Chapter 3]). We have checked Conjectures 2, 4, 5, 7, 9, 10, 11
and 12 for more than 100 different pairs (p,l) which are explicitly listed in [2,
Table 3.13].

2. THE CASE p,l =1 (mod 4)

In this section, we restrict to the “classical” case p,l =1 (mod 4). The following
conjecture is equivalent to Conjecture 1.

Conjecture 2. Let p,l =1 (mod 4).
If p,1 =1 (mod 8), then

pet, = Z3 x Zs xZ2, if p,l=1 (mod 3)
Z3 x 7%, else.
If p=5 (mod 8) orl =5 (mod 8), then

F“b ZoxZ3xZ3, if p,l=1 (mod 3)
B Zo X Z4, else.
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Proof of the equivalence of Conjecture 1 and Conjecture 2. If r,; = 6, then (p —
1)/4 =6s and (I —1)/4 = 6t for some s,t € N, i.e.p=24s+1and [ =24t + 1. It
follows p,i =1 (mod 8) and p,I =1 (mod 3).

If r,; =3, then (p —1)/4 = 3s and (I — 1)/4 = 3t, where s or ¢ is odd (oth-
erwise r,; would be 6). Consequently, we have p = 12s + 1 and [ = 12t + 1, in
particular p,l =1 (mod 3). If s is odd, then p =5 (mod 8). If ¢ is odd, then [ =5
(mod 8).

If rp; =2, then (p—1)/4=2sand (I—-1)/4=2t,i.e.p=8s+1andl =8t+1,
hence p,! =1 (mod 8). Moreover, s Z 0 (mod 3) or ¢t Z 0 (mod 3) (otherwise 7,
would be 6). In the first case, we have p Z 1 (mod 3), in the second case [ # 1
(mod 3).

Ifr,; =1, then (p—1)/4=2s—1or (I—1)/4 =2t —1 (otherwise 7, ; would be
even), hencep = 8s—3orl =8t—3,i.e.p=5 (mod 8) orl =5 (mod 8). Moreover:
(p—1)/4=3s+1lor(p—1)/4=3s+2o0r (I—-1)/4=3t+1or (I—-1)/4=3s+2
for some s,t € Ny (otherwise r,,; would be a multiple of 3), hence p = 12s + 5 or
p=12s+9orl =12t +5 or I = 12t + 9, in particular p Z 1 (mod 3) or [ # 1
(mod 3). O

The equivalence of the two conjectures above is also expressed in Table 1.

N W N = O

Tp,l l
p=1
5)

9

13

17

21 1

TABLE 1. 7y, for p, | taken modulo 24

13 17 21 (mod 24)

= = = = ot
=N~ N = NO
N = NN =N

=W = =W
— o s

The structure of Fgf’l also seems to depend only on the number ¢,; defined in
Section 1. Observe that

1 1
3<t, < min{p‘;, l;} ,
if p,l =1 (mod 4).
Conjecture 3. Let p,l =1 (mod 4). Then

(mod 12), if rp; =1
(mod 12), if rp; =2
( )
( )

N
=
If

y Z'f’l“p)l=3
mod 12), if rp; =6.
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We have checked Conjecture 3 for all pairs of distinct prime numbers p,l < 1000
such that p,l =1 (mod 4). The following values for ¢,; appear in this range:

{3,15,27,39,51,63,75,87,99} , if 7y =1
{9,21,33,45,57,69,81,93,105,117,129, 153}, if r,; = 2
{7,19,31,43,55,67,79,91,103, 115,127,151}, if r,; =3
{37,49,61,73,85,97,109, 121,133} , if rpy=6.

p,l

See Table 2 for the frequencies of the values of ¢,;, where p,l = 1 (mod 4) are
prime numbers such that p <1 < 1000.

tby| 3 15 27 39 51 63 75
4 1242 449 143 56 34 17T 7
87 99

50 2 1955
tby] 9 21 33 45 57 69 81
# | 178 158 84 57 40 21 8
93 105 117 129 141 153

9 12 5 2 1 575
tpy] 7 19 31 43 55 67 179
4| 236 130 79 42 18 8 12
91 103 115 127 139 151

6 1 4 2 1 539
tba| 1 13 25 37 49 61 73
# 26 15 15 16
85 97 109 121 133
T 4 3 2 3 91
\ [| 3160

TABLE 2. ¢, and its frequency, p < [ < 1000

Combining Conjecture 3 with Conjecture 1, we get another conjecture:

Conjecture 4. Let p,l =1 (mod 4). Then

Zo x 7.3, if tpy =3 (mod 12)

pab 73 x 72, if tpy =9 (mod 12)
P Lo x T3 x 73, if ty; =7 (mod 12)
73 x T3 x 72, if t,; =1 (mod 12).

3. THE CASE p,l =3 (mod 4)

If p,l =3 (mod 4), we have a conjecture similar to Conjecture 2.
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Conjecture 5. Let p,l =3 (mod 4).
If p (mod 8) = [ (mod 8), then

o o ZoxZ3xZ3, if p,l=1 (mod3) (=: case (B1))
wl Zo x 72, else (=: case (B2)).

If p (mod 8) # [ (mod 8), then

[ab o ZoxZ3xZ3, if p,l=1 (mod3) (=: case (B3))
bt = Zo x 73, else (=: case (B4)).

The four cases (B1)—(B4) defined in the conjecture above can also be expressed
taking p and [ modulo 24, see Table 3.

=3 7 11 15 19 23 (mod 24)

p=3| (B2) (B4) (B2) (B4) (B2) (B4)
71 (B4) (B1) (B4) (B2) (B3) (B2)

11| (B2) (B4) (B2) (B4) (B2) (B4)

15| (B4) (B2) (B4) (B2) (B4) (B2)

19| (B2) (B3) (B2) (B4) (Bl) (B4)

23| (B4) (B2) (B4) (B2) (B4) (B2)

TABLE 3. Cases (B1)—(B4) for p, I taken modulo 24

The connection to ,; is not as nice as in Section 2. We get the following values
for ¢, if p,I =3 (mod 4) are distinct prime numbers less than 1000.

({4,6,...,104} U {110,114, 122,124,132}) \ {84,88}, in case (B1)
Lo {0,2,...,78} U{84,100,110}, in case (B2)
»! {0}, in case (B3)

{0}, in case (B4).

In general, i.e. without the restriction p,! < 1000, it is easy to see that ¢, ; is always
even. Moreover, it follows from [4, Section 5] that ¢,; = 0 in the cases (B3), (B4),
and t,; > 0 in case (Bl). The computations of ¢,; combined with Conjecture 5
lead to the following conjecture:

Conjecture 6. Let p,l =3 (mod 4).

( ) Ifth —0 then ngl :ZQ X Z% O’I”F;’bl gZQ XZg XZZ OTFZ?Z ’EZQ XZE
(2) Ift,; =2, then Fab Zo x 73.

(3) Iftp,; >4, thenI‘“ & 7y X 73 X L2 OTFZZgZQXZ§,
(4) ]_'\ab = ZQ X Z3 >< Z4 or Fgf)l = Z2 X Zi, then tp’l =0.
(5)

5) If rab Ty x T x T2, then ty; > 4.
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4. THE CASE p=3 (mod 4), [ =1 (mod 4)

The remaining case is p (mod 4) # [ (mod 4). Since I'p; = T';,,, we can restrict
top=3 (mod 4), [ =1 (mod 4).

Conjecture 7. Let p=3 (mod 4), | =1 (mod 4).
Ifi =1 (mod 8), then

[ab Zo xZyxZ3, if pl=1 (mod 3) (=: case (C1))
bt = Zo x 73, else (=: case (C2)).

Ifl =5 (mod 8), then

rab o Zox 73 xZ3, if p,l=1 (mod 3) (=: case (C3))
mh Zo x 7.3, else (=: case (C4)).

Observe that the four conjectured possibilities for T’ bl are exactly the same as

in Conjecture 5.
See Table 4 for the cases (C1)—(C4) expressed by p and [ taken modulo 24.

=1 5 9 13 17 21 (mod 24)

p=3| (C2) (C4) (C2) (C4) (C2) (C4)
7| (C1) (C4) (C2) (C3) (C2) (C4)

11| (C2) (C4) (C2) (C4) (C2) (C4)

15| (C2) (C4) (C2) (C4) (C2) (C4)

19| (C1) (C4) (C2) (C3) (C2) (C4)

23| (C2) (C4) (C2) (C4) (C2) (C4)

TABLE 4. Cases (C1)—(C4) for p, I taken modulo 24

The behaviour of t,; seems to be very similar as in Section 3. We get the
following values for ¢, , if p = 3 (mod 4), I = 1 (mod 4) are prime numbers less
than 1000.

({4,6,...,48} U {58}) \ {40}, in case (C1)

{0,2,...,54} U {60}, in case (C2)
tp €

{0}, in case (C3)

{0}, in case (C4)

Conjecture 8. Conjecture 6 also holds if p=3 (mod 4), I =1 (mod 4).

5. MORE CONJECTURES

In this section, we give conjectures for the abelianization of the commutator
subgroup [I', ;, 'y ;] of I'p; and for a certain subgroup A, ; of I', ; of index 4 defined
below.
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Conjecture 9. Let p,l =1 (mod 4).
If p,l =1 (mod 8), then
ab o V23 X 736 X Zgs, if p,l =1 (mod 3)
[FPJ’ Fp,l] = 2
Zs x Lig %X Les , else.
If p=>5 (mod 8) orl =5 (mod 8), then

73 x Z3s, if p,l=1 (mod 3)

Zs x L3g, else.

[Pp,lv Fp,l}ab = {

Conjecture 10. Let p,l =3 (mod 4).

If p (mod 8) = [ (mod 8), then

73 x 2% X Zes, if p,l =1 (mod 3)
[Cp: Tpa]® = {72 X Zga ifp=3 orl=3
Zg X Zg X 2647 else.

If p (mod 8) # I (mod 8), then
73 x 73 x Z1s, if p,l =1 (mod 3)
[Tpis Tpa]® 22§ 72 x Zyg ifp=3 orl=3

Zg X Zg X ZlG s else.

The groups appearing in Conjecture 11 are again the same as in Conjecture 10:

Conjecture 11. Let p=3 (mod 4) and Il =1 (mod 4).

Ifi =1 (mod 8), then

73 x 73 x ZLea, if p,l =1 (mod 3)
(O, Tp )" = § 28 % Zia, ifp=3

Z3 X Zg X Zg4, else.

If1 =5 (mod 8), then
Z%XZ%XZlG, ’pr,lEl(mOd3)
(U1, Tpa]™ 2 23 x L, ifp=3

Zg X Zg X Zlﬁ s else.

Let A, ; be the following subgroup of I'p ;.
Apy = Yp i ({x = 0 + 210 + 225 + 23k € H(Z); 10 0dd; |7]? = p°l', 5,t € 2Np}).

Observe that A, is the kernel of the surjective homomorphism I'y; — Zg X Zs
determined by
(142Z,0+2Z), if |z]*=p
bpa(@) = o
(04+27,1427), if |z]?=1,
in particular A, ; is a normal subgroup of I', ; of index 4. It seems that the abelian-
ization of A,; does not depend on p and I, if p, [ > 3.
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Conjecture 12. Let p,l be any pair of distinct odd prime numbers. Then

ab o Zo x 72, ifp=3 orl=3

Apl:
’ Zo x T3 x 73, else.

Since the conjectured abelianizations of the groups I'p;, [I'p;,Ip;] and Ay, are

never 2-generated, we also get the following conjecture:

Conjecture 13. Let p,l be any pair of distinct odd prime numbers. Then the
groups Ty 1, [Tp1,Tpil and Ay are not 2-generated.

1

3
4

[5
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